

# Status of Magnesium Research & Development in Korea

Kwang Seon Shin Professor and Director

Magnesium Technology Innovation Center School of Materials Science and Engineering Seoul National University, Seoul 08826, Korea

### Background

- World Premier Materials (WPM) Project on Mg Alloys
- **•** Korea Institute of Materials Science (KIMS)
- Magnesium Technology Innovation Center
  - **Seoul National University**
- Additive Manufacturing of Mg Alloys (Daegun & KMTRA)

### **CO<sub>2</sub> Emissions**

### ■ CO<sub>2</sub> Emissions: Transportation > 20%



### Magnesium Alloys

### **Advantages of Magnesium Alloys**

- The Lightest among All Structural Metals
- •

### Disadvantages

- Cost
- Formability
- Strength
- Corrosion Resistance
- Anisotropy

•

#### **Twin Roll Casting Process**



#### Advantages

- **>** Low Production Cost
- Fine Microstructure

▶ .....

**Schematic Diagram of Twin Roll Casting** 

### **Status of POSCO Mg Sheet Project**

- **2002.08 :** Proposal for Mg Project to POSCO by **SNU**
- 2003.11 : Mg Sheet Project Team Established at POSCO/RIST
- **2004.01 : Consultant for Mg Project for POSCO/RIST**
- **2004.01 :** Construction of Pilot Plant for Mg Sheet
- **2004.11 : Completed Mg Sheet Pilot Plant**
- **2005.03 : Production of Mg Sheet (Width 600mm)**
- **2006.08 :** Start Construction of Mg Sheet Plant (\$60 Million)
- **2007.07 :** Commercial Production of Mg Sheet (3,000 ton/year)
- **2010.04 : Initiation of Mg Smelting Business**
- **2013.04 : Production of 2,000mm Wide Cast Strip**
- **2016.10 : Investment of >\$100M for Wide Strip Rolling Facility**
- **2019.03 : Completion of Rolling Facility for Wide Mg Strip**





**Strip Caster** 



#### **Reversible Warm Mill**



**Cleaning Line** 



**Sheet Slitting Line** 

### **Comparison between TRC Process and Conventional Process**



#### 

#### **※** Benefit of Strip Casting

- ✓ Continuous Process ⇒ Better Productivity & Lower Cost
- ✓ Reversible Warm Mill ⇒ Finer Microstructure





<Warm Rolling

Mill>

<Wide Strip Caster>

### World Premier Materials (WPM) Project on Mg Alloys

| Project Title                 | Light Magnesium Materials for Transportation Industry                                                                                                                                                                                                                                       |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Leader                | POSCO                                                                                                                                                                                                                                                                                       |
| Participating<br>Organization | Renault Samsung, Ssangyong Motors, Volkswagen, Hyundai Motors,<br>KMI, Solution Lab, Sungwoo Hitech, Shinyoung, MS Auto Tech, KSM<br>Hyundai Sungwoo Metal, Dongnam Precision Co.,<br>Nohroo Coil Coating, KC Chemical, GlowOne, MAGNA, KIMS, RIST<br>※ 16 Companies, 2 Research Institutes |
| Project Period                | 2010. 9 ~ 2019. 3                                                                                                                                                                                                                                                                           |

#### **Research Objectives**



Mg Surface Treatment Technology

### **POSCO Twin Roll Cast 2,000mm Magnesium Sheet**



# Luggage Retainer : Renault-Samsung SM7 Nova





- Component : Between the back of the rear seat and the trunk
- > Using AZ31B 1.4t sheet (POSCO)
- Weight Saving : 2.2kg

Steel (3.6kg)  $\rightarrow$  Mg (1.4kg)



# **Roof Panel : Porche 911 GT3 Rs**



**POSCO Mg Sheet** 

Width : 1,000mm Weight : 3.65Kg *(Al sheet : 4.72kg)* 



### LG Gram Notebook 15Z970-GPB5ML



# Application of Wrought Mg Alloys



### **Ultra Light Laptop by Magnesium Sheet**



E-form (High Formable POSCO Magnesium Sheet)





Processing

Technology

Research

**Activities of** 

Magnesium

Department

- High-performance non-flammable alloys
- High-strength cast/wrought alloys
- High-formability wrought alloys
- Corrosion-resistant alloys
- Alloys for high-temperature applications

Grain refining technology via carbon inoculation method

- Eco-friendly recycling technology of Mg scrap
- Rolling process for high-formability sheets
- Horizontal continuous casting
- High-speed extrusion of high-strength alloys
- Practical Application
- High-strength road wheel
- Seat frame for airplane/train
- Biodegradable implant
- Case for electronic product
- In- and exterior parts for railway vehicle (extrusion)

ting

(LPDC)

(HPDC)

(extrusion)

KINS Korea Institute of Materials Science

#### Non-flammable Stainless Mg Alloy

#### Main Contents

- Development of Non-flammable Stainless Magnesium Alloys for Automobiles, High-speed Trains, and Aircrafts

- Environmentally friendly (SF<sub>6</sub>-free) alloys and processes (refining, melting, casting)
- World best corrosion resistant Mg alloy (0.13 mm/y in 3.5% NaCl solution for 240 hr)
- Development of NF-stainless Mg alloy sheet with excellent RT-formability (LDH: 8.2 mm)
- Commercialization (IT, seat frame, etc.) & technology transfer





#### **Grain Refining Technology**

#### Main Contents

- Development of grain refiner applicable to commercial AZ-series components
- Development of high-efficiency grain refiner applicable to large-scale mass production
- Development of high-strength Mg cast parts with grain refinement technology

- Grain refinement to 1/10 of commercial alloys in low-pressure casting process of pilot scale
- Development of grain refiner capable of continuous injection into mass-production process
- Development of AZ91 road wheel with superior mechanical strength & elongation





#### **Eco-friendly Recycling Technology**

#### Main Contents

- Establishment of processing technology for pilot-scale (150 tpy) plant of Mg-based end-of-life scraps
- Development of high value-added alloying technology utilizing Ca and Y additions

- Reduction of Global Climate Impact (GCI) by 92% compared to traditional process (7.2 kg<sub>CO2</sub>/kg<sub>Mg</sub>  $\rightarrow$  0.6 kg<sub>CO2</sub>/kg<sub>Mg</sub>)
- Achievement of recycling rate of 89.6% and non-metallic inclusion level of 18.2 ppm





#### High-strength Biodegradable Mg Alloy

#### Main Contents

- Increase in reliability by upgrading production technology of biodegradable Mg implant
- Development of thermo-mechanical treatment for enhancement of mechanical properties of biodegradable Mg alloy

- Development of high-strength biodegradable Mg alloy (UTS x El. > 7,000 MPa  $\cdot$ %)
- (Commercial biodegradable Mg alloy: 2,500 MPa · %)
- Enhancement of mechanical properties through severe plastic deformation at room temperature







### **High Performance Magnesium Alloys**

- Low Cost
- High Formability
- High Strength
- High Corrosion Resistance
- Nonflammability
- Isotropic Mechanical Properties
- High Modulus
- Low Density



#### **Slip Modes in Magnesium**



| Type of<br>Dislocation | Number of Systems<br>(Independent) | <b>Burgers Vector</b> | Magnitude of<br>Burgers Vector    | Slip System  |                                          |
|------------------------|------------------------------------|-----------------------|-----------------------------------|--------------|------------------------------------------|
| a (AB)                 | 3 (2)                              | 1/3<1120>             | a =3.209                          | Basal        | {0001} <11 <del>2</del> 0>               |
|                        | 3 (2)                              |                       |                                   | Prism-I      | $\{10\overline{1}0\} < 11\overline{2}0>$ |
|                        | 6 (4)                              |                       |                                   | Pyramidal-I  | $\{10\overline{1}1\} < 11\overline{2}0>$ |
| c (ST) –               | 3 (2)                              | <0001>                | <0001>  c =5.211                  | Prism-I      | {1010} <0001>                            |
|                        | 3 (2)                              |                       |                                   | Prism-II     | {1120} <0001>                            |
| c+a (ST+AB)            | 6 (5)                              | 1/3<1123>             | $\{ a ^2 +  c ^2\}^{1/2} = 6.120$ | Pyramidal-II | {1122} <1123>                            |

#### **Research Programs at Magnesium Technology Innovation Center**

#### Development of Advanced Mg Alloys

- Computer Simulation for Phase Formation by Thermodynamic Calculations and Flow/Solidification Behavior
- > High Strength/High Formability Alloys
- > High Temperature Alloys
- Corrosion Resistant Alloys and Biodegradable Materials
- Characterization of Microstructure/Texture and Mechanical Properties
  - > Prediction of Deformation Behavior by Crystal Plasticity Simulation
  - Manufacturing and Characterization of Mg Single Crystals
  - Analyses of Microstructure/Texture, Dislocation, Twin
  - Mechanical Properties and Corrosion Behavior
  - Creep and Fatigue Properties
- Development of Twin Roll Casting/Extrusion/Rolling Processes
- Semi-Solid Processing of Mg Alloys
- Surface Treatment: Plasma Electrolytic Oxidation Coating
- Development of Mg Die Casting Components for Automobile and Electronic Industries

# **Development of Twin Roll Cast Mg Alloys** with High Strength and High Formability

### Solidification Behavior & Segregation





- Development of New Mg Alloys for TRC Process
- Optimization of Processing Parameters

P. Thomas, Continuous Casting of Aluminium Alloys, Institute of Physics, 2003, UK, 26-47

### **ICME for Alloy Design and Materials Processing**

#### **Pandat**<sup>TM</sup>

Thermodynamic Calculations Prediction of Stable Phases



#### **AnyCasting**<sup>TM</sup>

Analysis of Flow and Solidification Behavior Die Design, Defect Analysis

AnyCasting

AnyCastine

#### **JMatPro**<sup>TM</sup>

**Thermodynamic Calculations** 

Prediction of Material Properties, Alloy Design



Texture Analysis

**ODF** Calculation



#### LaboTex

VPSC-GA

Texture Simulation Based on Visco-Plastic Self-Consistent Model and Genetic Algorism

Prediction of Texture & Stress State during Deformation

**Guide for Alloy Design** 



LOS E.OS E.I E.IZ E.I



Simulation of Deformation Behavior during Material Processing by FEM

Simulation of Extrusion and Twin Roll Strip Casting Processes

Guide for Process Development



### **Manufacturing Process for TRC Plates**





#### **Fabrication of TRC Mg Alloy Plates**

- ► Thickness: 3.0~3.3mm
- ▶ Width: 50~65mm
- ► Length: 2,500~3,500mm

- Development of New TRC Mg Alloys with Low Segregation & Improved Formability

#### **Solidification Behavior of Mg-6Al-X (Scheil Condition)**





### **Thermal Properties of Mg-6Al-X Alloys for TRC Simulation**



#### **Simulation of Liquid Fraction During TRC Process**



#### **Microstructure of TRC Mg-6Al-X Alloys**



- Segregation Factors
  - ► Freezing Range
  - ► Second Phase
- ► Solidification Behavior
- ► Partition Coefficient

| AS60         |             | AJ60                  | A           | 260                | Mg Alloys | Centerline<br>Segregation % |
|--------------|-------------|-----------------------|-------------|--------------------|-----------|-----------------------------|
|              |             |                       |             |                    | A6        | 1.9                         |
|              |             | a start and the start |             |                    | AX60      | 2.1                         |
| $\mathbf{x}$ |             |                       | 7           |                    | AC60      | 2.0                         |
| Segregation  |             |                       | Secretion   |                    | AS60      | 2.7                         |
|              | Segregation |                       | Segregation |                    | AJ60      | 2.2                         |
| 500          | <u>۳۳</u> , | 500µm_                |             | <sup>500µm</sup> 1 | AZ60      | 3.4                         |

#### **Centerline Segregation Area and Melt to Roll Nip Distance**



### **Photographs of Mg-6Al-X Alloys after Erichsen Tests**



#### **Mg-Zn-X-Ca TRC Plates**













### **Photographs of Mg-Zn-X-Ca Alloys after Erichsen Tests**

#### Erichsen Tests

- ► Punch Diameter: 20mm
- ► Punch Speed: 5mm/min.



#### **VPSC Simulation Results of Mg-Zn-X-Ca Alloys**



### **Activities of Deformation Mode of Mg-Zn-X-Ca Alloys**



#### Deformation Modes

- Function: Initially Basal <a> Slip & Later Prismatic <a> Slip Activated
- Compression: More Basal <a> Slip Activated for High Formability

#### **Relationship Between Erichsen Value and Yield Strength**



# **Fundamental Study on Deformation Behavior of Mg Single Crystals**

#### **The Largest Magnesium Single Crystal!**



#### Mg Single Crystal 150mm(L) × 58mm(Dia.)



#### **Experimental Procedures**



#### **Mechanical Test**



#### **Microstructure Characterization & Texture Measurement**



### Various Sample Orientations Used for Mechanical Testing

| Orientation A (S) |                         |             |               |  |
|-------------------|-------------------------|-------------|---------------|--|
|                   | LD                      | Slip System | Schmid Factor |  |
|                   | [40 20 20 37]           | Basal       | 0.50          |  |
|                   |                         | Prismatic   | 0.22          |  |
|                   |                         | c+a         | 0.28          |  |
|                   | Tensile Twin            | 0.25        |               |  |
|                   | <b>Compression Twin</b> | 0.29        |               |  |

| Orientation B (S) |               |                  |               |  |
|-------------------|---------------|------------------|---------------|--|
|                   | LD            | Slip System      | Schmid Factor |  |
|                   |               | Basal            | 0             |  |
|                   |               | Prismatic        | 0.5           |  |
|                   | [90 123 33 0] | c+a              | 0.42          |  |
|                   |               | Tensile Twin     | 0.47          |  |
|                   |               | Compression Twin | 0.39          |  |



### **Tensile Direction** // [40 20 20 37]: Basal Slip Activation





### Tensile Direction // [90 123 33 0]: Prismatic Slip Activation





### Loading Direction $\# [0 \overline{1} 1 0]$



#### **Procedure for VPSC-GA Simulation**



#### **Effects of Temperature on CRSS for Slip and Twinning Modes**





# Magnesium 3D Printer (Daegun Tech & KMTRA)



| Build Volume       | 60x60x80            |
|--------------------|---------------------|
| Layer Thickness    | 0.04mm~0.08mm       |
| Focus Diameter     | 50 um               |
| Scan Speed         | Up to 7.0m/s        |
| Laser Type         | Yb-fiber Laser 200W |
| Dimensions (W*D*H) | 1,540x1,215x2,000   |
| Weight             | 1,500kg             |
| Power              | AC 220V 30A         |
| Power Consumption  | Max 2.2 kW          |
| Gas                | Argon               |
|                    |                     |

# **3D Printing of Mg Alloy**



# **3DP of Magnesium Alloys**



# **3DP of Magnesium Alloys**





The 10<sup>th</sup> International Conference on Magnesium Alloys and their Applications Jeju Island, Korea