

ALMA forum 2018

2018/11/10, Tokyo

Magnesium as an energy carrier

I. Nakatsugawa National Institute of Advanced Industrial Science (AIST), Japan

Content

Introduction

- Magnesium as thermal energy carrier
- Magnesium as hydrogen carrier
- Magnesium as thermal energy + hydrogen carrier
- Magnesium as electrical energy carrier
- Recycling of used magnesium
- Concluding remarks

What is "energy carrier"?

Definition: <u>Chemical substance</u> which serves as a carrier of energy transportation / storage

Requirement for energy carrier¹⁾

- Abundant (low cost)
- Convert to various kinds of energy
- High energy conversion efficiency
- User friendly
- Available when and where needed
- Stockpile in large/small volume
- Transport easily in short/long distance
 - Release no harmful substances after use

There are no energy carrier which can satisfy all the requirements. 'Hydrogen' is considered as the most promising candidate.

1) A. Ishihara and K. Ohta, Introduction to renewable energy, Nikkankogyo (2012),141.

Magnesium working with hydrogen carrier

Magnesium it is expected to work alongside with H_2 energy carrier.

Magnesium as thermal energy carrier

Temperature profile of domestic waste heat¹⁾

Heat storage material to utilize waste heat effectively

- 1) S. Kobayashi, Panasonic Technical Journal, 62 (2016)121-125.
- 2) Y. Kato, High Density Thermal Energy Storage Workshop (2011).

Heat storage	Material (reaction)	Operating temp.	Storage density	
Latent heat storage	lce (ice ⇔ water)	0 °C	0.34 GJ/m ³	
	Erythritol	121°C	0.48 GJ/m ³	
Chemical heat storage	$\begin{array}{c} MgO+H_2O \\ \Leftrightarrow Mg(OH)_2 \end{array}$) 350°C	101501/m3	
	$CaO+H_2O$ ⇔Ca(OH) ₂	500°C	1.0~1.5 GJ/M°	

Property of heat storage material²⁾

Snow collection site (120,000 m³)

Sapporo Chitose Airport utilizes collected snow for cooling in summer.

Magnesium as thermal energy carrier

$MgO + H_2O = Mg(OH)_2 - \Delta H = 81 \text{ kJ/mol}$

<u>Heat pump</u>: A device that transfers heat energy from cold area to hot area using heat storage material

Y. Kato, High Density Thermal Energy Storage Workshop (2011).
 S. Kobayashi, Panasonic Technical Journal, 62 (2016)121-125.

Magnesium as hydrogen carrier

Magnesium can absorb H_2 up to 7.6 wt%. High desorption temperature (~350 °C) and sluggish reaction kinetics are concerned.

A process of H_2 production at room temperature via hydrolysis of MgH₂ is developed.

 $MgH_2 + 2H_2O \rightarrow Mg(OH)_2 + 2H_2$, $\Delta H = -268 \text{ kJ/mol}$

 \Leftrightarrow MgH₂ = Mg + H₂ Δ H = 75 kJ/mol

Evolution of H_2 gas via hydrolysis of MgH₂ with different concentration of citric acid at room temperature¹).

(a) 0.3~0.5 L/min.

(b) 10 L/min.

 MgH_2 reactors²⁾.

- 1) I. Nakatsugawa, unpublished results
- 2) http://www.biocokelab.com

Magnesium as hydrogen carrier

Magnesium as thermal energy + hydrogen carrier

1) Y. Yavor et al, Int J Hydrogen Energy 40 (2015) 1026-1036.

Magnesium as thermal energy + hydrogen carrier

Feasibility study of Mg combustion with 3-5 kW pilot scale

Results

Calibration of aerosol and exhaust gas

F = Filter

- Combustion completion ratio : 91-100%
- Mg/O₂ molar ratio : 1.8-2.3

Task

• Emission of NOx and fine particles

1) Y. Yavor et al, Int J Hydrogen Energy 40 (2015) 1026-1036.

Basic feature		Fuel cell		Primary /secondary battery			
And	ode	H ₂	CH ₃ OH	Li	Mg	AI	Zn
Standard (V _N	l potential _{NHE})	0	-	-3.01	-2.38	-1.66	-0.76
Electro-	Ah/g	26.59	5.02	3.86	2.20	2.98	0.82
chemical equivalent	Ah/cm ³	-	4.58	2.06	3.8	8.1	5.8

As electric energy carrier

Anode	H ₂	CH ₃ OH	Li	Mg	AI	Zn
Cell performance	0	\triangle	Ø	Δ	Δ	Ø
Scalability	Δ	\triangle	Δ	Δ	Δ	Δ
Compatibility	Ô	Ø	Δ	0	0	×
Safety	×	×	Δ	0	0	0
Reserves	0	0	×	0	0	Δ
Price	Δ	0	×	Δ	Δ	Δ

Commercialized Mg primary batteries

	MnO ₂ dry-battery	Water-activated battery		Air battery
Example		C Asa Becades Becades Becades		- CONTRACTOR
Cathode	MnO ₂	Ag/AgCl	MnO ₂	O ₂
Electrolyte	NaClO ₄	Sea water	NaCl	NaCl
OCP (V)	~1.8	~1.6	~1.6	~1.5
Potential at 5mA/cm ² (V)	1.6~1.7	1.4~1.5	<1.2	1.2~1.3
Energy density (Wh/kg)	~120	~120	~70	~70
Comment	Dis- continued	Special use		

Principle

Water activated Mg battery

Cathode: $2MnO_2 + H_2O + 2e \rightarrow Mn_2O_3 + 2OH^-$

Anode: Mg \rightarrow Mg²⁺ + 2e

AIST

Water activated Mg battery

efficiency on discharge current density

Nyquist diagram of water activated Mg battery at the terminal voltage.

- Anode and cathode impedance increase with water injection cycle.
- Warburg impedance was observed at cathode, suggesting the depression of MnO₂.
- Gravimetric energy density took the maximum at 0.48mA/cm².
- Current efficiency was decreased by staking cells.

I. Nakatsugawa, H. Nakano: J. Jpn Inst. Light Metals, 67 (2017) 503-510.

Mg - air battery

Principle

Anode: Mg \rightarrow Mg²⁺ + 2e

Cathode: $1/2 O_2 + H_2O + 2e \rightarrow 2OH^-$

Feature

- Start discharging by adding 5~10% NaCl
- Continuous operation is possible by replacing used Mg anode and electrolyte.
- The current efficiency is ~60 %.

2.2W unit cell 30W stacked cell An example of Mg-air battery¹⁾

Structure of Mg-air battery

1) photo: courtesy of ARV corporation, Japan.

Mg - air battery

- Stable discharge is possible up to 40 mA/cm².
- Adherent reaction product tends to form at higher discharge current.
- Current efficiency increases with higher discharge current.

I. Nakatsugawa, Y. Chino, H. Nakano, J. Power Sources, submitted.

 $\begin{array}{ll} \mbox{Verification test of Mg-air battery (MAB) as an emergency power supply} \\ \mbox{EV}^{1)} & \mbox{Trailer house}^{2)} \end{array}$

275 Wh unit cell

stack of 100 unit cells

photo: courtesy of ARV corporation, Japan.
 photo: courtesy of Seven corporation, Japan.

MAB: 300 Wh x 12-16pcs

LIB: 2.5kWh

Recycling of used magnesium

Recycling of used magnesium

Hot water oxidation, battery $Mg + 2H_2O \rightarrow Mg(OH)_2 + \frac{1}{2}H_2$ $Mg + H_2O \rightarrow MgO + H_2$ **Hydrolysis** $MgH_2 + 2H_2O \rightarrow Mg(OH)_2 + H_2$ Battery $Mg + 2e \rightarrow Mg^{2+}$ $\frac{1}{2}O_2 + H_2O \rightarrow 2OH^{-}$ $Mg + 1/2O_2 + H_2O = Mg(OH)_2$ Recycle, Reuse of MgO/Mg(OH)₂

Recycling of used magnesium

Reuse MgO/Mg(OH)₂ as chemical additives

 Flue gas desulfurization Neutralizer of acid waste 	 Additives for plastic Ceramics Additives for fuel oil 	 Insulator Refractory material Additives for cement Fertilizers 			
Global production of Magnesium compound : 7 000 ktpy $(2014)^{1}$					

Global production of Magnesium compound : 7,000 ktpy (2014)¹⁾ ⇔ Magnesium metal : 900 ktpy (2014)¹⁾

1) http://www.discoveryinvesting.com/blog/2015/8/10/a-closer-look-at-magnesium

Reduction to Mg metal

• Thermal reduction: $MgO \rightarrow Mg + \frac{1}{2}O_2$ (MgO + C \rightarrow Mg + CO)

 $(MgCl_2 \rightarrow Mg + Cl_2)$

• Electrolysis: $Mg^{2+} + 2e \rightarrow Mg$

Conclusion

Evaluation of Magnesium as energy carrier

Requirement	Evaluation	Comment
Abundant (low cost)	Δ	Abundant Ores. Metal price is high. The cost competitive and green production is anticipated.
Easily converted from/to various kinds of energy	Δ	Need economical/green refining process for full-scale operation
High energy conversion efficiency	Δ	Need to improve current efficiency for electrical energy application.
Easy to handle by consumers	0	In the forms of plate, consolidated powder and slurry are available
Available when and where needed	0	
Stockpile large / small quantity	0	Mg and MgH ₂ are stable in the atmosphere. Attention to powder
Easy to transport in short/long distance	0	explosion.
Do not release harmful substances after use	0	NO ₂ is released in hot water oxidation process.

Thank you!