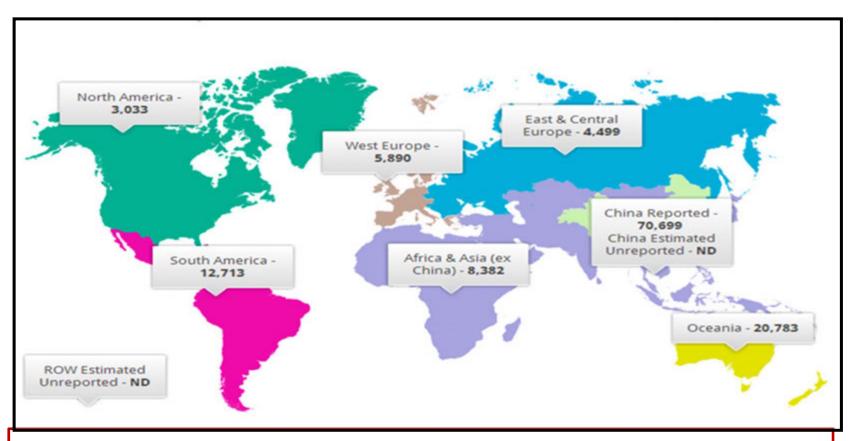
2018 ALMA IN TOKYO

Current Situation and Countermeasures of Alumina Industry in China

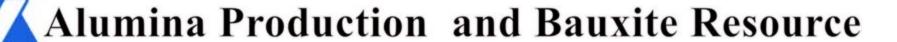
Lijuan Qi Qingjie Zhao

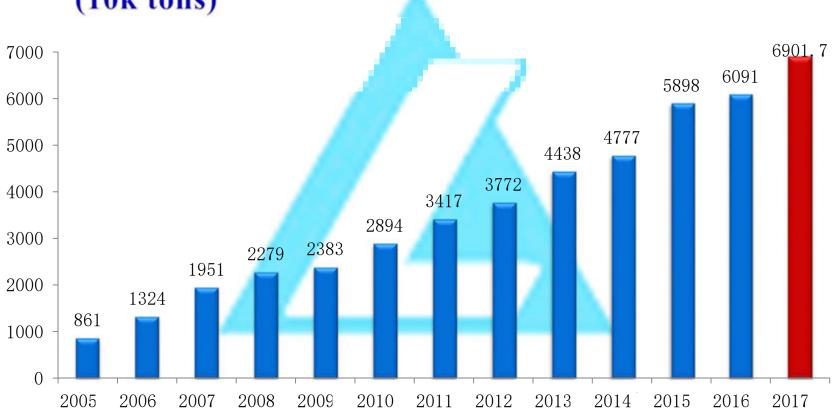
Zhengzhou Nonferrous Metals Research Institue Ltd., Chalco

Tokyo Japan Nov. 2018

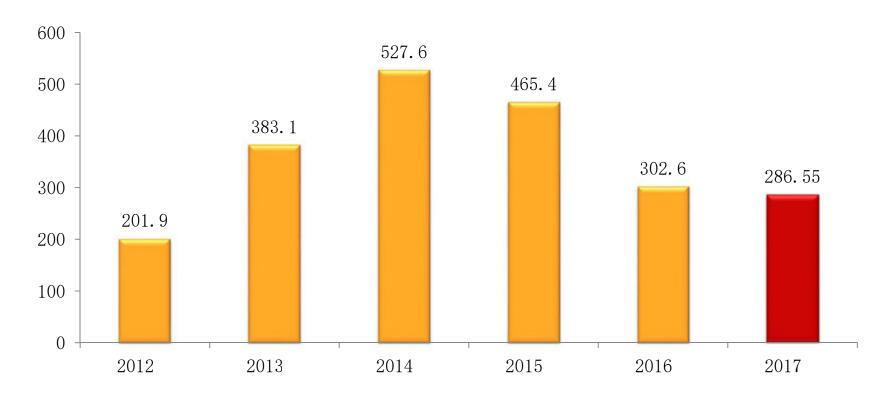


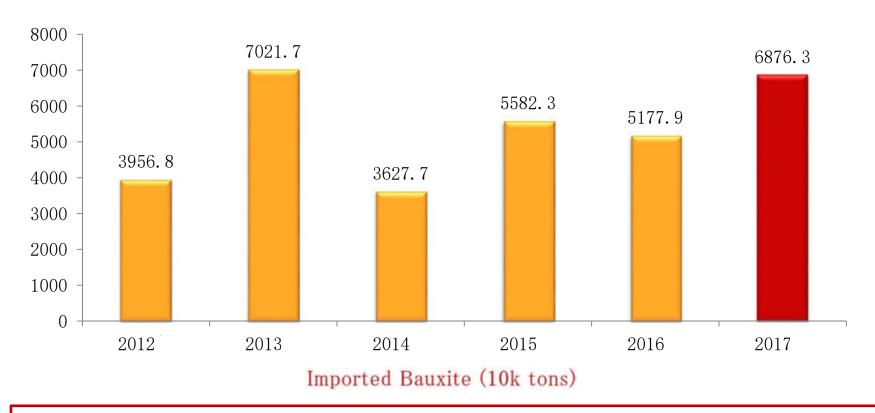
Contents


- □ Current Situation of Chinese Alumina Industry
- ☐ The Challenges Chinese Alumina Industry Facing
- ☐ Countermeasures for Chinese Alumina Industry


Global Alumina Production in Year 2017(k tons)

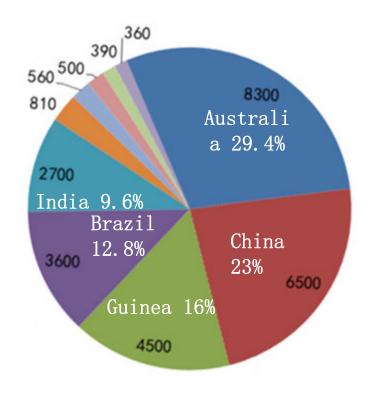
Chinese alumina production was 56.1% of the whole world last year.


Chinese Alumina Production in the past 13 years (10k tons)

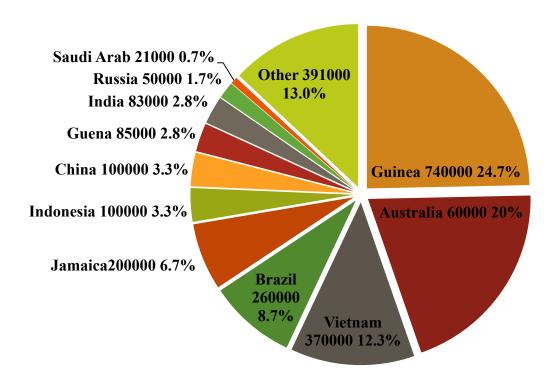

Imported Alumina in China(10k tons)

CHALCO

In recent years, China's import of alumina has shown a downward trend, with 2,865,500 tons of alumina imported in 2017


Chinese Imported Bauxite

The total of imported bauxite in 2017 is over 68 million tons, which is almost 51% of the yearly bauxite consumption in China.



Global Bauxite Production in Year 2017

The output of global bauxite in 2017 was about 282 million, among which China ranked the second with more than 23% of the total, with 65 million tons.

Global Bauxite Resources Reserve (10k tons)

Total global bauxite resource reserve is 30 billion tons in 2017, among which China only accounts for 3.3%, with 1biliion tons.

Contents

- □Global Bauxite Resource and Alumina Production
- ☐ The Challenges Chinese Alumina Industry Facing
- ☐ Countermeasures Needed for Chinese Alumina Industry

Resource Issue

- Bauxite Quantity— severe shortage
- Over half of the whole world's alumina production with only 3.3% of the global bauxite reserve
- Almost half of the bauxite used from abroad

Resource Issues

Bauxite Quality —Sharply Deteriorating

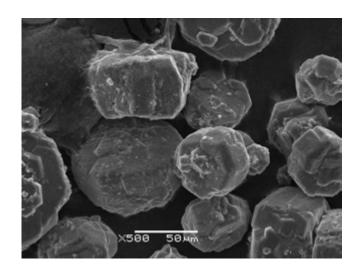
Resource Issues

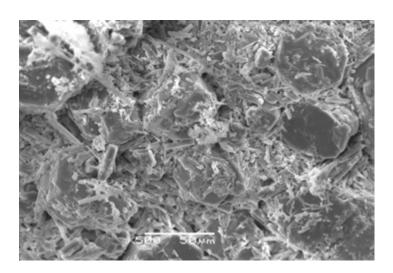
- Bauxite Quality —Sharply Deteriorating
- ✓ More Species of Impurity and Their Content Higher

	Si	K	Li	C_{org}	S
More Difficult Operation				√	
More Soda Consumption	√				~
Higher than Standard		√	√		
Less Whiteness				>	✓
Finer Particles				>	
Lower Yield				✓	
Corrosion Safety					√

Environmental Issue

- Air pollution- more severe regulations
- ✓ Removal of sulfur oxide in fume
- ✓ Removal of nitric oxide in fume
- ✓ Removal of suspension particles in fume


	Previous Standard mg/Nm³	Prensent Standard mg/Nm³
Sulfur Oxide	200-400	100
Nitric Oxide	None	100
Suspension Particles	20-100	10



Commodity Quality Issues

- Physical Property
- ✓ Particle Size Finer
- ✓ Particle Fragile

Commodity Quality Issues

- Chemical property deterioration
- ✓ Lithium higher
- ✓ Sodium higher
- ✓ Potassium higher
- ✓ Ferrous higher
- ✓ Zinc higher
- ✓ Gallium higher

	1	2	3	4	5
Li ₂ O	0.13	0.12	0.017	0.067	0.020
Na ₂ O	0.30	0.49	0.37	0.32	0.37
K ₂ O	0.031	0.037	0.014	0.021	0.086
Fe ₂ O ₃	0.017	0.013	0.0053	0.019	0.010
ZnO	0.0048	0.0045	0.018	0.0023	0.0036
Ga ₂ O ₃	0.014	0.013	0.014	0.012	0.021

Economic Issues

- Higher Manufacturing Cost
- ✓ More consumption included bauxite, soda, and energy
- ✓ More expense of environmental protection
- ✓ More labor cost

Contents

- ☐ Global Bauxite Resource and Alumina Production
- ☐ The Challenges Chinese Alumina Industry Has
- ☐ Countermeasures for Chinese Alumina Industry

- Shortage of bauxite resource
- ✓ Bauxite Import
- —Process Modified Needed
- —Bauxite source unsteady
- —Price Increase

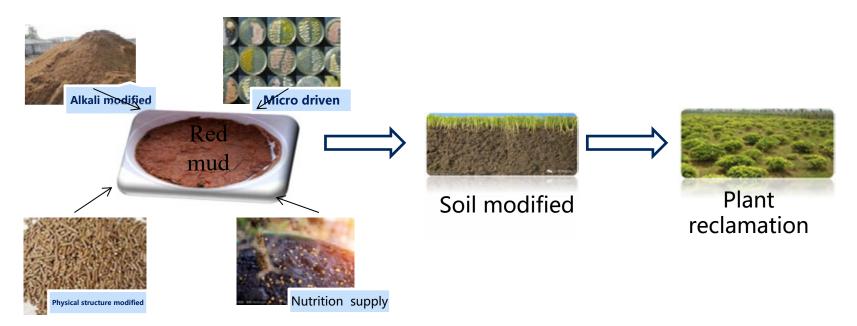
- Shortage of bauxite resource
- ✓ The application of low grade bauxite
- How to remove the silica from the bauxite to increase its grade
- —Physical Flotation

- Shortage of bauxite resource
- ✓ The application of low grade bauxite
- How to remove the silica from the bauxite to increase its grade
- —Chemical Flotation

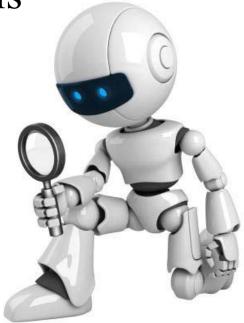
Bauxite/%		Concentrate/%			
A/S	S	Corg	A/S	S	Corg
2.99	1.71	0.3	8-9	0.2-0.4	None

- Shortage of bauxite resource
- ✓ The Substitute of bauxite
- Fly ash
- —Soda Process
- —Acid Process
- Nepheline
- Andalusite

- Lower quality of alumina
- ✓ To remove sulfur
- —Calcination(being industrialized)
- —Physical Flotation(industrialized)


- Lower quality of alumina
- ✓ To remove organic
- —Wet Oxidation to remove non-oxalate organics (being industrialized)
- —Crystallization to remove oxalate during seeded precipitation (industrialized)

- Environmental Issues
- ✓ Bauxite residue
- Dry stack industrialized
- Comprehensive application being researched
- Reclamation of bauxite residue dam being researched



Higher manufacturing cost

✓ Realization of online analysis

✓ Application of AI

Thanks for your attention!