

Time-resolved 3D measurements of mechanical behaviours in aluminium alloys

SPring.

Presented by Hiroyuki TODA (戸田裕之)¹,

with the collaborations of D. Leclere¹, L. Qian¹, H. Oogo¹, Z.A.B. Shamsdin¹, Y. Suzuki², A. Takeuchi², K. Uesugi² and M. Kobayashi¹

Toyohashi University of Tech., Toyohashi, Japan
 Japan Synchrotron Radiation Research Institute

Current status of synchrotron microtomography

Various advanced 3D/4D image analyses

- I. Microstructural tracking for strain mapping
- II. Grain Boundary Tracking (GBT)
- III. Diffraction-Amalgamated GBT (DAGT) technique for crystallographic analysis
- Examples of applications
 - I. Analyses of a cracked-medium
 - II. Ductile fracture: hydrogen pore mechanism
 - III. High temperature cavitation from hydrogen pores
- From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME)
 Summary

X-ray microtomography (CT): Imaging to appl.

Courtesy of Mr. Taki in Nihon Visual Science, Inc.

Current status of various X-ray CT apparatuses

http://www.spring8.or.jp/ja/

http://www.shimadzu.co.jp/ndi/pr oducts/x ryct/x ryct04.html

http://www.bio-imaging.com/ indsystems.asp

I aha CT

http://www.med.shimadzu.co.jp/ clinic/std/ct/index.html

Resol'n			Synchrotron Radiation (SR				(μ-focus)			igh E) Med	ical	СТ		
1 nr	n P	10 recip	nm itate	100) nm	n 1µ Iicropol	ım	10 Crac	μm •k	100 Мас) um	1 m	۱m	
GB	5	reorp	Micr	ocrac	:k	IM	Ср	Inc	lusion	Mac		16013		
μ-structural features of materials 4														

SR-CT application to a cracked metals

Fatigue crack (Black): Crack opening ~ a few micron Toda, Sinclair, et al., Phil. Mag. A, 83(2003), 2429.

Good visualisation of a crack and its opening behaviour
 µ-structural features visible owing to the high resolution

		SPring-8	APS	ESRF
	Location	Japan	USA	EU
SR facilities	Energy	8 (GeV)	7 (GeV)	6 (GeV)
	Beamline	62	68	56
and a state of the	Circumference	1,436m	1,104m	844m

Current status of synchrotron microtomography

Various advanced 3D/4D image-analyses

- I. Microstructural tracking for strain mapping
- II. Grain Boundary Tracking (GBT)
 III. Diffraction-Amalgamated GBT (DAGT) technique
 - for crystallographic analysis
- Examples of applications
 - I. Analyses of a cracked-medium
 - II. Ductile fracture: hydrogen pore mechanism
 - III. High temperature cavitation from hydrogen pores
- From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME)
 Summary

3D/4D image analysis techniques developed 8

Crystallographic orientation

simulation

Microstructural Tracking Technique

Numbers of particles/pores in Al

Physical displacement of each particle/pore tracked
 Unique experimental technique to obtain 3D/4D mapping of mechanical quantities
 Kobayashi, Toda, et al., Acta Mater., 56(2008), 2167

Details of microstructural tracking

Kobayashi, Toda, et al., Acta Mater., 56(2008), 2167

Current status of synchrotron microtomography Various advanced 3D/4D image-analyses Microstructural tracking for strain mapping I. Grain Boundary Tracking (GBT) III. Diffraction-Amalgamated GBT (DAGT) technique for crystallographic analysis Examples of applications I. Analyses of a cracked-medium II. Ductile fracture: hydrogen pore mechanism III. High temperature cavitation from hydrogen pores From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME)

Another key tech. for GBT: GB visualisation

Immersing TP in liquidus metal

Diffusion into GB. *Diffusion length: $\overline{x} = (2Dt)^{1/2}$ (T = 323K, t = 500s) Grain interior, $\overline{x} = 2.51 \times 10^{-5} \,\mu$ m Grain boundary, $\overline{x} = 79.5 \,\mu$ m Observation (absorption contrast) *Transmitted intensity: $I = I_0 \exp\{-(m_M t_M + m_{Ga} t_{Ga})\}$ Pairs of metals that cause LME

Pairs of metals that cause LME

Material	Embrittling liquids
AI	Hg, Ga, In, Sn, Pb, Cd, Zn, Na
Cu	Hg, In, Ga, Bi, Zn, Li, Sn, Pb
Ti	Hg, Cd, Ag
Ma	No K Ph Co Zn

- Mg Na, K, Rb, Cs, Zn
- FeHg, In, Li, Sn, Pb, Cd, Zn, CuKhor, et al. J. of Physics: Condensed Matter,
vol.16, 2004, S3511-S3515.1

Grain Boundary Tracking (GBT) technique

Current status of synchrotron microtomography Various advanced 3D/4D image-analyses I. Microstructural tracking for strain mapping II. Grain Boundary Tracking (GBT) **III.Diffraction-Amalgamated GBT (DAGT)** technique for crystallographic analysis Examples of applications I. Analyses of a cracked-medium II. Ductile fracture: hydrogen pore mechanism III. High temperature cavitation from hydrogen pores From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME) Summary

XRD using an X-ray pencil beam for DAGT

 $(10 \times 10^{\text{etector}})$

Sample **The second seco**

Beam

A grain of interest (Red)

Schematic demonstrating the experimental setup and how the beam interacts with an individual grain.

The experiment was carried out at SPring-8 synchrotron facility (Hyogo, Japan) with the following parameter

Beam line: BL20XU Energy: 35 keV Camera: 2000x2000 CMOS Sintillator: Gd₂O₂SiTb Beam Size: 10 µm x 10 µm Sample-detector: 13 mm *z*-step: 16 µm x 20 y-step: 10 µm x 60 **Rotation:** 0° -180° Exposure: 0.1s / 1°

Local strain map on a virtual cross-section

nsile

10

-10

every single grain, that is extensively developed across grain boundaries Current status of synchrotron microtomography Various advanced 3D/4D image-analyses I. Microstructural tracking for strain mapping II. Grain Boundary Tracking (GBT) III. Diffraction-Amalgamated GBT (DAGT) technique for crystallographic analysis **Examples of applications** I. Analyses of a cracked-medium II. Ductile fracture: hydrogen pore mechanism III. High temperature cavitation from hydrogen pores From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME) Summary

Evaluation of local fracture resistance: Crack growth through a dual-phase material (AI-7Si)

Displacement in the width direction

Premature crack propagation in a brittle eutectic AI-Si phase No substantial crack growth in a ductile α -AI phase

H. Toda, et al., Acta Mater., 56(2008), 6027

Extensive particle damage distribution

Effects of underlying texture obvious

Current status of synchrotron microtomography Various advanced 3D/4D image-analyses I. Microstructural tracking for strain mapping II. Grain Boundary Tracking (GBT) III. Diffraction-Amalgamated GBT (DAGT) technique for crystallographic analysis **Examples of applications** I. Analyses of a cracked-medium **I. Ductile** fracture: hydrogen pore mechanism III. High temperature cavitation from hydrogen pores From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME) Summary

Long-unrecognized pores in various alloys

High-density micro pores observed even in wrought aluminium alloys by employing the high-resolution X-ray tomography

Toda, et al., Acta Mater., 57(2009), 2277

Dimple patters originated from H pores

Fracture surface (Unnotched) Fracture surface (Pre-cracked)

Dimple patterns originated from micro pores in the three TPs

Properties	U	Innotched	Notched	Pre crack
Ava diameter (um)	Micro pore	3.7	4.6	4.2
Avg. diameter (µm)	Particle damag	e 3.3	3.6	3.8
Arcal fraction (%)	Micro pore	<mark>54.6</mark>	< 62.3	< 67.1
Aleal Haction (70)	Particle damag	e 45.4	37.7	32.9

Dimples originated from H pores occupy more than 50 %
 Fractional area increases with the increase in stress triaxiality23

Current status of synchrotron microtomography Various advanced 3D/4D image-analyses I. Microstructural tracking for strain mapping II. Grain Boundary Tracking (GBT) III. Diffraction-Amalgamated GBT (DAGT) technique for crystallographic analysis **Examples of applications** I. Analyses of a cracked-medium II. Ductile fracture: hydrogen pore mechanism **III. High** temperature cavitation from hydrogen pores From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME) Summary

Effects of H pores on cavitation at high T

- In-situ tension of AI-4.5Mg at 773 K at ε of 10⁻²s⁻¹
- Trans-/inter-granular transition regime

Toda, et al., Acta Mater., under review, (2012)

High temperature test rig Growth of pores/cavities under tention
 Origin of the common extensive cavitation during high temperature deformation investigated as well 25

Growth of H pore / creep cavity

Toda, et al., Acta Mater., under review, (2012)

Growth behaviors are similar between pores and creep cavities
 Pre-existing pores and creep cavities initiated early tend to grow bigger: Pre-existing pores finally account for 64 % in V_f 26

Current status of synchrotron microtomography Various advanced 3D/4D image-analyses I. Microstructural tracking for strain mapping II. Grain Boundary Tracking (GBT) III. Diffraction-Amalgamated GBT (DAGT) technique for crystallographic analysis Examples of applications I. Analyses of a cracked-medium II. Ductile fracture: hydrogen pore mechanism III. High temperature cavitation from hydrogen pores From observation / analyses to mater. development: "Reverse 4D Materials Engineering" (R4ME) Summary

Reverse 4D Materials Engineering (R4ME)

- The conventional materials development process inevitably needs trial and error. Averaged properties evaluated after sampling limited μ-structural features.
- R4ME enables rapid development of high-performance materials in which μ-structures are virtually optimized by means of IBS
 To render R4ME a practical technique, the representation of a given complex 3D μ-structure is 'coarsened' to make it suitable to conventional materials design techniques

Coarsening

Basic concept

Features to be coarsened: Particles, GB, crystallographic grains, alloying elements...

Reduction of model dimension <u>CONSTITUENTS</u>:

Morphology, distribution, crystallographic info., concentration...

STEPPER:

Velocity, changing rate, probabilistic parameter...

Procedures

Data mining: Statistical anal. (Multiple regression anal., response surface), NN model, RBF network...

Cvntl. understanding

*Evaluation with arbitrarily chosen limited correlations

Coarsening

*Comprehensive, panoramic view of all mater. behaviors

Coarsening process thoroughly filters out a staggering amount of μ-structural information in a given complex 3D μ-structure
 Can also be answer to "Information explosion" in 4D imaging 30

Summary

- Recent 3D/4D imaging provides direct observation of complex and dynamic phenomena. Physical displacements of µstructural features have been used to obtain local ɛ, crack driving forces and crystallographic information in 3D/4D. Especially DAGT (Diffraction-Amalgamated Grain-boundary Tracking) technique provides a description of the crystallographic orientations in polycrystalline materials from an XRD analysis in addition to the morphological and mechanical information obtained from the 3D imaging.
- *Reverse 4D Materials Engineering*' (R4ME), has been proposed through the utilization of the advanced imaging and quantification techniques. It optimizes μ-structures by means of an accurate image-based simulation in which multi-scale 3D structures of existing materials are accurately reproduced.

Acknowledgement: Grant-in-Aids for Science Research (S) (FY 2012~2016) for R4ME and (A) (FY 2008~2012) for DAGT from the Japan Society for the Promotion of Science (JSPS) **31**