

Improving the Property 'Portfolio' of Mg Alloys by a New Integrated Processing Technique

Yuri Estrin

Centre for Advanced Hybrid Materials Department of Materials Engineering Monash University, Melbourne

ICP-AFLM Meeting, Chiba Institute of Technology, Chiba, Japan, 9 November 2012

Improving the Property 'Portfolio' of Mg Alloys by a New Integrated Processing Technique

Yuri Estrin

Centre for Advanced Hybrid Materials Department of Materials Engineering Monash University, Melbourne WCU Program, Seoul National University, Korea

ICP-AFLM Meeting, Chiba Institute of Technology, Chiba, Japan, 9 November 2012

Australian Partnership for Light Metals Research

Professor StJohn, Dr. Rajakumar, Prof. Muddle

Australian Partnership for Light Metals Research

Prof. Collins, Dr. Rajakumar, Prof. Muddle

Australian Partnership for Light Metals Research

Prof. Collins, Mr Barnes, Prof. Muddle

Australian Partnership for Light Metals Research

Mg ARC Centre of Excellence Design in Light Metals

Prof. Collins, Mr Barnes, Prof. Wu

Australian Partnership for Light Metals Research

Mg ARC Centre of Excellence Design in Light Metals

Dr. Easton, Mr Barnes, Prof. Wu

Titanium Technologies

From Ore-to-More

John E. Barnes | Leader, CSIRO Titanium Technologies

FUTURE MANUFACTURING FLAGSHIP
www.csiro.au

Maximising Australia's Natural Resources Potential

Titanium - from ore to more

1Rank of Australian titanium ore reserves in the world0Amount of Titanium metal produced in Australia90Number of years until known ore is depleted100The factor of economic value of metal over ore1%Resource that could be used to yield the same revenue9,000Years of resource left

Page 9 | Powder Metallurgy of Titanium Conference | Brisbane |

Directly from Powder to Finished Product

Titanium powder

Cold Spray Titanium Heat treated & etched

Page 10 | Powder Metallurgy of Titanium Conference | Brisbane |

Cold Spray for Pre-forms

MONASH University

Page 11 | Powder Metallurgy of Titanium Conference | Brisbane |

Continuous Sheet Production

MONASH University

Page 12 | Powder Metallurgy of Titanium Conference | Brisbane |

SEVERE PLASTIC DEFORMATION RESEARCH AT MONASH UNIVERSITY

Centre for **A**dvanced

Room Temperature ECAP Rig

Elevated Temperatures ECAP Rigs

Isothermal ECAP Unit

Asymmetric Rolling Mill

MONASH University

In collaboration with Deakin University (Australia)

1531

Severe Plastic Deformation Processes for Thin Samples

High Pressure Torsion

Cone - Cone

<u>New Results</u>: Strengthening of Metal Tubes

(i) Severe shear strain is imposed within the thickness of the sample due to the difference in magnitude of the material flow velocities at two surfaces resulted from different rotational velocities of the confining die and/or mandrel.

(ii) Processing involves friction forces acting on the surfaces and a high hydrostatic pressure within the deformation zone resulted from reduction of the wall thickness.

STRENGTHENED METAL TUBES by Severe Plastic Deformation (Patent Application US61/545921)

Punch

Tube

Die

<u>New Results</u>: Microstructure of Processed Tube Sample (AA6060)

Initial microstructure (annealed at 415°C)

Microstructure after processing

New Results: CP-Ti Bio-Implants

Calcein staining reveals the amount of calcium in ECM after 20 days of incubation. It describes the measure of mineralization of the extracellular matrix, which is necessary for formation of the bone in the vicinity of the implant. Grade 2 AR Grade 2 ECAP1

Grade 4 AR

Grade 4 ECAP2

Grain refinement and mechanical property improvement of Grade 2 CP Titanium

Grain structure of ECAPmodified titanium

Tensile curves of coarse-grained (CG) and ultrafine-grained (UFG) titanium

Nanostructured Ti Shows Distinctly Greater Preosteoblastic Cell Growth in vitro

MC3T3-E1 cells from mice embryos

Y. Estrin et al. J. Biomed. Materials Res., 2008

Integrated extrusion and ECAP to improve the performance of magnesium alloy ZK60

Collaborations

- Prof. Alexei Vinogradov, University of Togliatti, Russia and Osaka University, Japan
- Dr. Dmytri Orlov, Reitsumeikan University, Kyoto, Japan
- Dr. Daniele Pelliccia, Monash University, Australia
- Prof. Nick Birbilis, Monash University, Australia

Aim

To improve performance of Mg-Zn-Zr alloy ZK-60 through microstructure control through an integrated process of *extrusion and equal channel angular pressing (ECAP)*.

Integrating extrusion+ECAP

ZK60, Tensile Properties

Mg ZK60, Fatigue Performance

Mg ZK60, Corrosion Performance

Mg ZK60, Microstructure Evolution along conical section of the die

Mg ZK60, Microstructure Evolution by EBSD

in PC section of the die

Mg ZK60, Intermetallics Evolution by SEM

and optical profilometry after exposure test

Mg ZK60, Intermetallics Evolution by **HR-TEM**

new deformation-induced particles discovered

<u>g</u> <0001>

Summary

- Four meter long bars were manufactured by integrated extrusion and equal channel angular pressing.
- Tensile, fatigue and corrosion properties were simultaneously improved by such processing.
- Corrosion properties are controlled by particle redistribution, while mechanical properties depend primarily on microstructure and texture evolution.

Mechanical properties

Condition	UTS, MPa	YS, MPa	Elongation, %
Grade 2 AR	480	350	30
Grade 2 ECAP	850	750	20
Grade 4 AR	766	620	22
Grade 4 ECAP	1030	940	20

MONASH University

* R.Z. Valiev et al. , Advanced Engineering Materials, 10 (2008) B15-B17. ** W.-J. Kim, C.-Y. Hyun, H.-K. Kim, Scripta Materialia, 54 (2006) 1745-1750. 39

New Results: Bimetallic Tubes

Cu (111)Cu (200)AI A 2nm

