

Development of Titanium Alloys for Load Bearing Implant Devices through Focusing on Young's Modulus Control

Mitsuo Niinomi Institute for Materials Research, Tohoku University

Properties required for medical metallic materials

Artificial shoulder joints

Artificial dental implants

High mechanical reliability

Properties required for medical metallic materials

Research

Reducing stress shielding

Bone absorption or shrinking occurs due to the remodeling according to the decrease in mechanical stimulation when, for example, the artificial joints or bone plates made of the conventional high modulus metallic materials are implanted or fixed to the fractured bone. They become to be the causes loosening of the artificial hip joints or re-fracture of bone after extraction.

Development of metallic materials with low moduli, which are similar to that of the cortical bone is required.

SUS316L stainless steel: 180 GPa Co-Cr alloys : 210 GPa Ti-6Al-4V ELI: 110 GPa Cortical bone: 10-30 GPa

Properties required for medical metallic materials

Allergic and toxic problems happen

Allergy problems appeared on fingers and hands due to metals in the mouse

Required properties:

- High corrosion resistance to prevent dissolution of metallic elements.
 - 2. Using elements showing low toxicity and allergic problems

bh of the *in situ* sample he layer covering the Ti ence between the electron osited Pt layers.

T. Jarmar et al., J. Biomed. Mater. Res. A 87 (2008) 1003-1009.

- High mechanical reliability
- High corrosion resistance to prevent
 - dissolution of metallic elements
- Using elements showing low toxicity and
 - allergic problems
- Low Young's modulus close to that of bone

Table Biocompatibility of various biomaterials judged by patterns of osteogenisis			
Pattern of osteogenisis	Biomaterials		
Intervend osteoginisis	Stainless steel, Vitallium, PMMA (Polymethyl methacrylate)	Biotolerant materials	
Contact osteogenisis	Titanium, Tianium alloys, Carbon, Alumina, Zirconia, Titania, TiN, Si3N4	Bioinert materials	
Bonding osteogenisis	Bioglass, Ceravital, Tricalcium phosphate, Hydroxyapatite, A-W glass ceramic	Bioactive materials	

Crystal structures of titanium alloys

(a)Hexagonal close packed structure (HCP)

(c) Body centered structure
(BCC)
β -type titanium alloy

α-type titanium alloy

(b) HCP+BCC

 $(\alpha + \beta)$ -type titanium alloy

Fig. Schematic explanation of α -, (α + β)-, and β -type titanium alloys based on crystal structure.

β-type titanium alloys are advantageous for developing low Young's modulus medical metallic biomaterials.

<u>Many kinds of low modulus *B*-type titanium alloys</u> with non-toxic and allergy-free elements have been developted,.

Representative ones, for example, are as follows:

- Ti-13Nb-13Zr (ASTM F1713-96) : near β type, Low modulus
- Ti-12Mo-6Zr-2Fe (ASTM F1813-97): β type, Low modulus
- Ti-15Mo : β type (ASTM F2066) (U.S.A.), Low modulus
- Ti-16Nb-10Hf : β type, Low modulus
- Ti-15Mo-2.8Nb-0.2Si-0.26O : β type, Low, modulus
- Ti-35Nb-7Zr-5Ta (TNZT) : β type, Low modulus
- Ti-29Nb-13Ta-4.6Zr (TNTZ): β type, Low modulus
- Ti-Mo-Sn:β type, Low modulus
- Ti-40Ta, Ti-50Ta : β type, High corrosion resistance

Table Young's moduli of $(\alpha + \beta)$ -type Ti-6Al-4V ELI, β -type Ti-29Nb-13Ta-4.6Zr (TNTZ), and cortical bone.

Material	Young's modulus (GPa)
Ti-6Al-4V ELI (WQ)	110
Ti-29Nb-13Ta-4.6Zr •WQ •WQ + aged at 673 K for 3.6 k •WQ + CW	63 97 55 - 60
Cortical bone	10 - 30

WQ: Water quenching after solution treatment AC: Air cooling after solution treatment CW: Cold working

EXPERIMENT 1: BIOCOMPATIBILITY TEST

Implantation of columnar specimen into lateral femoral condyle under intravenous anesthesia.

C. M. R of boundary of bone and columnar specimen implanted into lateral femoral condyle of rabbit at 8 weeks after implantation.

C.M.R.

Regarding biocompatibility, TNTZ is equal to or possibly greater than Ti6Al4V both showing direct contact, and much better than SUS316L with a radio lucent line.

Evaluation of bone formation versus low modulus Experiment 1 : Intramedullary fixation

Longitudinal drilling

Intramedullary rods made of Ti-29Nb-13Ta-4.6Zr (TNTZ), Ti-6Al-4V ELI and SUS 316 L stainless steel

Experimental fracture of the tibia

Keeping Fibula intact

2.

Remodeling at 24 weeks after implantation

TNTZ TI-6AI-4V ELI SUS316L

RESULT 2: C.M.R. CROSS SECTION AT 24w

AO mini dynamic compression plate (AO mini DCP)

Based on the design of AO mini DCP for human finger, the bone plate were made of TNTZ.

The plate and screws of Ti-6Al-4V and SUS316L were also provided as control.

As experimental animal, mature New Zealand white rabbits (all male, weight about 3kg) were used.

Increase of tibia diameter in TNTZ

Middle

ThedoublewallstructureisobservedwithdifferentX-Pdensitiesandaboundarylineatmiddleanddistalis observedis

The shape of the inner wall is close to the original cortical bone,

The outer wall seems to be newly formed cortical bone.

The inner wall seems to be the remains of old cortical bone.

Bone remodeling according to the stress condition occurs

Distal

Material development for specific devices

Spinal fixation device is composed of tree parts of rod, screw and plug. Spine is corrected to be normal shape using two rods.

Operation with spinal fixture

Bend during operation→ Portion needed bending is unknown before operation (treatment before operation is difficult)

Space for bending is narrow \rightarrow High bending formativeness is required. Scratch is formed by contacting with bending device. \rightarrow Fatigue strength is degraded by notch effect.

> Required property: bending formativeness (easy operation)

Factor, which determines bending formativeness

Bending formativeness is higher with decreasing springback.

Concept of supressing springback

Fig. The relationship between Young's modulus and springback

Young's modulus required for spinal

requirements of surgeons and patients.

Relationship between schematic phase diagram of tittanium alloys and β stability.

Determining deformation induced phase

Utilizing ω phase is effective to increase Young's modulus by deformation.

Circular streaks related to athermal ω phase are recognized. Amount of athermal ω phase is decreased due to increase in β stability.

Optimizing alloy composition (example of Ti-12Cr)

Deflection from ω phase becomes to be strong \rightarrow Formation of deformation induced ω phase

Determining deformation induced phase

Change in Young's modulus and microstructure due to deformation

Characteristics of Ti-12Cr

<u>Springback</u>

Springback is supressed by increasing Young's modulus due to deformation induced w phase transformation.

Future of titanium alloys with changeable Young's modulus for biomedical applications

New usage of deformation induced ω phase

Spinal fixation devices Utilize deformation Induced ω phase transformationto supress springback

Self-tunable Young's modulus

Utilize deformation induced ω phase to controlling shape

Metallic medical devices, which exhibit optimized mechanical functionality according to the indivisual usage conditions such as treated area, sex, year, living circumstances like living tissues can be developed.

Thank you very much for your kind attention!