" Materials Korea - 소재강국 실현을 위한 프론티어"

Current Industrial Application and R&D Status on Titanium in Korea

Dr. Yong Tai LEE Director of Light Metals Division

Titanium Production & Consumption

- Titanium Import & Export in Korea
- Titanium Industrial Applications in Korea
- Titanium R&D in Korea

Titanium Production Flow

Titanium Sponge

Titanium Mill Product

Titanium Production & Consumption in the World(2007) KIMS

Consumption

	ton	%		
USA	28,000	27		
Japan Europe	22,000 6,500	21 6		
Russia	27,000	26		
UK	2,000	2		
China	17,000	17		
Total	102,50 0	10 0		

Mill Products

Source : Fundermentals of Titanium and Its Works (2008)

SPONGE

Production				
	ton %			
USA	8,000	8		
Japan	31,000	30		
Europe	0	0		
Russia	27,000	26		
Kaza	19,000	19		
UK	8,000	8		
China	9,500	9		
Total	102,50 0	10 0		

USA

UK

Titanium Flow in Korea (2009)

Export and import of Titanium in Korea кімs

Imports of Ti products (ton), 2002 to 2011

Exports of Ti products(ton), 2002 to 2011

- ▷ Domestic Ti consumption relies mostly on overseas supply.
- Ti consumption has increased steadily over the last 10 years. Imports of Ti products peaked at 21.3kt in 2011.
- Exports of Ti in Korea are mainly scrap and secondary processing articles (tube, plate etc.). They are also increasing and reached 4kt in 2011.

- Korea is an important market for Ti with imports of sponge and mill products coming mainly from Kazakhstan, the UK, Ukraine, Russia, Japan, USA and China.
- ▷ Imports of unwrought Ti and mill products were 21.4kt in 2011.
- ▷ Imports of Ti mill products and articles came mainly from Japan, Poland and the USA.

Titanium Import Countries in Korea

KIŴS

Titanium Rod & Wire Imports for Medical Purpose KIMS

Source: Korea Customs Service, Unit:						Unit: ton		
Year	2005	2006	2007	2008	2009	2010	2011	2012(1-4)
USA	344	259	277	515	270	876	1,010	366
Japan	448	380	229	261	248	188	457	62
China	23	40	49	78	66	123	242	93
Germany	3	9	11	5	3	37	15	6
England	-	4	17	5	4	10	12	2
Taiwan	-	2	10	14	9	12	16	3
France	12	33	52	53	45	64	43	6
Italy	13	-	74	55	21	-	14	1
Liechtenstein	-	-	-	1	1	1	1	-
Israel	-	-	-	-	-	-	1	-
Norway	-	-	-	-	1	-	16	-
Swiss	1	1	1	-	-	-	-	-
Netherland	-	21	-	-	-	-	-	-
Poland	-	18	1	-	-	-	-	-
Australia	-	-	-	-	-	-	1	-
Hong Kong	-	-	-	-	-	-	1	-
Sweden	-	-	-	-	-	1	1	-
Russia	16	9	15	10	15	14	20	-
Singapore	-	-	-	1	3	-	1	-
Total	852	776	737	998	686	1,328	1,851	541

Aerospace (1)

Aerospace (2)

Aerospace (3)

Aerospace (4)

Militaries (1)

Militaries (2)

Automobiles (1)

Automobiles (2)

Camshaft Ti-Valve MMC 15%TiC tappets, weight -40 % followers Ti-MMC 12% Hollow Valves TiC weight -55% Spring retainer Ti-Piston pins Ti-MMC 12%TiC MMC 15%TiC weight - 50% weight -30% Conrods Ti-Crankshaft Ti-MMC 12%TiC MMC 15%TiC weight - 44 % weight - 44 %

Automobiles (3)

Off-shores

Desalination (MSF Single Module Evaporator Transportation)KIÂS

MSF Evaporator of Umm Al Nar Desalination Plant Station 'B' (UAE, 12.5 MIGD x 5 Units, W x H x L = 20 x 5 x 100 m)

DOOSAI

Desalination (Benghazi North CCPP MED Plant) KIMS

Benghazi North CCPP MED Plant (Libya, 0.55 MIGD x 2 Units)

Doosan Heavy Industries & Construction

Desalination

Power Generations (1)

Power Generations (2)

Chemicals

Titanium piping for chemical plants

Titanium reaction tank

Sports & Leisure (1)

KIŴS

Sports & Leisure (2)

Commodities

Functional Applications

Biomedicals

R&D and Production History of Titanium in Korea KIMS

		In the 1980s		1995		2000	20	05 2	010
	KIGRAM	Refining	Ti melting	:	: 	· · ·	Hig	h purificatio	ก่
	KIST		Ti melting					Ti clading	
Research	KIMM(KIMS)		Characteris	ation		Ti melting	g/casting	Alloy devel	opment
Institute	RIST			Ti roll	ing	Welding		Ti re	fining
	ADD					Military	applicati	on of Ti parts	5
	KITECH							Bio-applic	ation
	POSTECH			P	hysical	metallurgy	Forming	g processing	1
	SKKU				Ti ca	sting Mold	developm	ent Oxidati	on
	KAIST					Ti intermetal	lics Pl	hase transfor	mation
l Iniversity	Kangnung Univ.				Ph	ase transform	nation	Beta Ti alloy	,
Ornversity	GSNU					Ti-Ni	shape me	emory alloy	
	Inha Univ.						Seve	re deformation	on
	CNU							Bio appli	ation
	CBNU							Surface tre	eatment
	KOSMO Chem.		Korea Titan	ium('72)	j Ilm	nenite/rutile	КО	SMO chem.	i
	POONGSAN		Conde	nser tul	be for p	oower plant		· ·	1
	HYUNDAI Titanium		Sale	s of Ti	produc	ts Heat e	xchanger	tube Weld	ings
	SEAH					Titani	um pipe		1
	KOS LIMITED					Titar	ium wire		1
Industry	KPC					Ti me	lting/cast	ing Titaniun	n valve
maaotry	TSM Tech					Ti press	ure vesse	l Titanium	clading
	OSSTEM						1	itanium imp	ant
	ALL Met							Titanium w	eldings
	NIB							Ti melting/ca	asting
	TAEWOONG							Ti ring forg	ing
	MEC								Fe-Ti

Why Titanium? – Stress Shield Effect

Failure Analysis of Implant

2006.09.26

2007.03.13

2008.03.28

Development of Titanium Implants

KIŴS

KIMS

DV-Xα Cluster Method

This approach is based on the theory of molecule orbital by electron circulation.

- electrons move atomic orbitals
- LCAO (Linear combination of atomic orbitals) methc -

Wave function is related to potential of atomic orbital

tal
$$\bigotimes_{i} = \sum_{i} C_{ij} \chi_{i}(1)$$

 $\sum_{i} H_{ij} - \varepsilon_{k} S_{ij} C_{jk} = 0$

This function is transformed by Hamiltonian equation into the followed matrix

$$H_{ij} = \int x_{i}^{*}(1)Hx_{j}(1) dv_{1} \qquad \qquad H: \text{ electron Hamiltonian}$$

$$S_{ij} = \int x_{i}^{*}(1) x_{j}(1) dv_{1} \qquad \qquad H(1) = -\frac{1}{2} \bigtriangledown_{1}^{2} - \sum_{v} \frac{z_{v}}{r_{1v}} + \int \frac{p(2)}{r_{12}} dv_{2} + v_{xc}(1)$$

By solving these equations, we can calculate electron density, electron number, then using these values, covalent bond strength between atomic orbital i and j in overlap population (Q_{ij}) can be calculated. Consequently, bond order of atoms showing covalent bond (Bo) and Fermi energy level of d-electrons (Md) can be determined.

아다치 히로히코(足立裕彦) 모리나가 마사히코(森永正彦) 나스 센자부로(那須三郞), (1973)

Low Elastic Modulus Group on Bo-Md Map

KIMS

Md

Titanium Alloy Design and Parts Development for Medical Implant

Research Purposes :

- 1. Alloy design of new β-based Ti alloy for bio-material parts
- 2. Titanium bio-materials with low elastic modulus (below 60 GPa) and excellent bio-compatibility, better formability

2. Mi, X.J., Ye W.J., Hui S.X., Lee D-G, Lee Y.T.: 200810240992.X, 🗆 🗠 several patents/papers/presentations

LCB Titanium Alloys

Research Purposes :

1. Development of the new beta titanium alloys having low elastic modulus and high strength by low cost alloying elements

2. Understanding of the alloying effect, microstructure evolution, strengthening mechanism and property optimization in the series of low cost beta titanium alloys

3. Development of a cost-effective material and processing method for automotive applications

100 g

100 %

Research Contents:

Both Institute GRINN KIMS Property Evaluation and Fabrication & Processing of Theoretical Approach of Analysis of LCB Alloys New LCB by Full-Scale LCB Alloy System Design Evaluation of Formability Investigation of Boron Addition Processing & Alloving Effect and Heat Treatment Methodology and Their Effect of Developed LCB Alloys Properties Optimization and International Patenting & Manufacturing LCB Wire Mechanism Investigation Pre-commercialization Parts/ and Spring Parts Development of LCB Alloys with High Strength and Low Elastic Modulus 1. Lee D-G. Lee Y.T., Seo J.H.; Korea Patent, 12-0057217, under PCT

Advantages :

Low Cost-Cheap Materials

Spring :

System :

28 g

47 %

- 1. Low grade sponge
- 2. Cheap alloying element
- 3. Composition tolerance
- 4 Fabrication cost down
- 5. Mass production

wires

Powertrain Connecting Rods Pistons Pins

as-machined ingot

as-rolled rods

Kroll Process

Commercialized extraction process: >99% world Ti sponge production

KIMS

High productivity

(cathode: carbon, anode: Stainless steel)

Direct Titanium Powder Process

Direct Powder Rolling for Sheet

KIŴS

Titanium Precision Castings

Titanium Ingot Defects and Causes

Processing	Origin of Defects	Type of Defects
	- Raw Materials	
	* Sponge Contamination	Type I (LDI, HID, HA)
	* Recycled Titanium	Type I , HDI (High Density Inclusion)
Materials	* Matster Alloy Contamination	Туре І
	* TIG Welding	Type I , HDI
	- Ingot	
	* Aggressive Grinding	Туре І
	- Solidification	
	* Segregation	TypeⅡ (HAD) Beta fleck, Blocky Alpha
	* Microstructure	Large Dendrite
Melting	* Shrinkage	Shrinking Pipe, Porosity
	- Processing	
	* Air leak, Water leak	Type I
	* Arc Power Level Variation	TypeⅡ, Beta Fleck, Blocky, Alpha
	* Heating Process	Alpha Case
	* Microstructure	Elongated Alpha
Forming	* Strain rate	SIP (Strain Induced Porosity)
	* Oxide Inclusion	Fold (Alpha case Folding)
	* Super Cooling	Crack in Corner

Solution of the Defects

Processing	Defects	Reasons	Solution
Solidification Defects	Type I Type I Blocky Alpha Beta Fleck Dendrite Micro Shrinkage Micro Porocity HDI	N, O Solidification Shrinkage Micro solidification Segregation Local Heating, Over Heating In profer solidification Local solidification Ce, N, O W, Ta, WC, Nb	Raw materials Control, Triple melts Triple melt, Top Cutting Diffusion of the billet Diffusion of the billet Egui axed microstructure Shrinkage Mechanical Welding Raw material control Screening the HMM
Processing Defects	Alpha Case Elongated Alpha SIP Fold Corner Crack	Oxidation In Sufficient Recrystallication Non uniform Deformation Folding the Ingot Local Cooling	Shot Blasting, Chem-Milling Sufficient Plastic deformation Uniform microstructure Die Design Edge cutting, Local Heating

Friction Stir Welding

FSW was invented by W M Thomas in 1991 (International patent application PCT/GB92/02203)

Over 1600 patents have been filed on FSW.

About 10 FSW equipment manufacturers are licensed by TWI as at 16 May 2005.

FSW can be applied in shipbuilding and marine industries, aerospace industries, railway industries, car industries, etc.

Process	Welding Speed (mm/min)	Power at Work kW	Gross Power Required (kW)	Heat Input kJ/mm
FSW	500	2	2.5*	0.24
MIG (Mech)	300	7.5	8.6	1.5
CO. Lagar	5000	10	112	0.12
CO ₂ Lasei	1600	5	55	0.18
* - using a geared drive would increase value				

FSW of 6mm Ti-64 plate

Friction Stir Welding

Titanium Welding with Flux

b

а

Video picture of the arc a – without flux b – with flux

Distribution of temperature across the arc axis

Titanium Alloys Isothermal Forging

KIMS

Precision Forming of Titanium Alloys

Work Scope

- 1. Process Windows for Sheet Metal Forming of Titanium Metals and Alloys
- 2. Characterization and Enhancement of Sheet Metal Formability of Titanium Alloys
- Anisotropic Deformation Behavior

Formation of α Case and Surface Crack

Deep Drawing of Ti-64 Alloys Sheets

BLANK BOTTOM DIE

KIMS

Spring back

🤤 Sticking with Dies

R

Precision Forming of Titanium Alloys

Work Scope

- FE Simulation of anisotropic deformation behavior and microstructure evolution

KIMS

Precision Forming of Titanium Alloys

Work Scope

- FE Simulation of anisotropic deformation behavior and microstructure evolution

KIMS

Patent: PCT/KR2012/001952 & PCT/KR2009/007069, Chan Hee Park

Schematic illustration of novel process (Ti-6AI-4V)

Prevention of

Research Purposes :

(rolling, extrusion, forging etc.)

 \bigcirc

metal fracture Coarsening **Temperature** Suppression of coarsening B Good workability **Critical condition Metal fracture** Poor workability $A \rightarrow 0 \rightarrow 0$ **Formation of** SMC structure → Strain or fraction spheroidized

Development of UFG Ti alloys without SPD KIMS

1. To control an UFG microstructure using lower strains and higher strain rates

2. To fabricate UFG Ti alloys using conventional metal forming methods

RD 👈

- Imposed Strain ~ 1.4
- Strain rate ~ 0.1/s

Superelastic NiTi thin wire for medical device KIMS

Research Purposes :

- 1. Superelasticity NiTi wire with a diameter of 0.1 mm by thermo-mechanical process
- 2. Development of high purity NiTi ingot using VAR skull/VAR process

Compositional deviation of Ni element: within 0.5% wt. Oxygen and Carbon less than 0.1% wt. Diameter: ~0.1 mm, Total elongation: >10% Tensile strength: > 1150 MPa

Research Contents : Vacuum Skull Melting

Vacuum Arc Re- melting

Capacity : 3kg melting & casting

Centrifugal caster : 400 rpm

Ingot dimension :200mm(dia) x 800mm (length)

Superelastic NiTi thin wire for medical device KIMS

Gleeble Test Machine

Basic mechanical property acquisition

FE analysis for Ingot breakdown

· Design of thermo-mechanical process

Swaging and groove rolling

Wire drawing

Development of TiNi and CoCr Precision Tube for Medical Implants (New project)

Research Purposes :

- Development of TiNi and CoCr precision tube for medical implants using the combination approach

Research Contents :

Tube Manufacturing Technology

Warm or cold tube drawing

 Combination Technology : Swaging + Caliber rolling
⇒ grain refinement

Tube Drawing

- Design of precision tube drawing equipment
- Bi-metal tube drawing

End Product

High purity billet

Precision tube

Medical devices

EBSD analysis of Titanium Alloys

KIŴS

(α+β) alloy : Ti-6Al-4Fe-0.25Si

Powder Rolled Titanium

<u>Song. Y.H. et al., Korean J. Met. Mater, 50 (2012), To be published.</u>
<u>Kang J.- H.et al, IWJC 2012 (2012),</u>

Porosity :3.4%

Friction Stir Welded Ti-AI

In-situ and Ex-situ TEM Observations of Titanium Alloy (Ti-6AI-4Fe alloy)

Research Purposes :

- 1. Understanding microstructure after deformation at R.T. and high temperature (~ 700°C)
- 2. Identification of precipitate (TiFe) during aging at different time and temperature.
- 3. Finding out crystallization condition of TiNi thin films for SMA application

Research Contents

1. Microstructure after deformation at 700°C of Ti-6AI-4Fe alloy

High angle grain boundaries with reduced grain size after deformation

In-situ and Ex-situ TEM Observations of Titanium Alloy (Ti-6AI-4Fe-0.25Si and TiNi thin films)

Research Contents

2. Precipitate formation and growth during aging at 550°C

TiFe formation after 10h

Increased TiFe fraction after 100h

3. In-situ heating TEM observation of TiNi thin films

Fig. (a, c) Microstructures and (b, d) SADP of Ti-50.1Ni thin film by TEM (a, b) as-deposited and (c, d) after annealing at 500°C for 30 min. SADPs indicate that as-deposited film was amorphous structure (b) and fully crystallized after annealing (d).

Development of Beta-Gamma TiAl

Target : UTS > 800 MPa, Ductility > 2.5%

Intermetallics - O Phase

Mechanism of Surface Harding

Surface oxide film formation

Oxide film dissolution

Nitride film formation

