ALMA, 6 August 2016, Kyoto, Japan

Fatigue of ultrafine grained light metals

ALEXEI VINOGRADOV

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - NTNU, TRONDHEIM, NORWAY

Acknowledgements

Yuri Estrin, Professor, Monash University, Melbourne, Australia
Kwang Seon Shin, Professor, Seoul National University, Seoul, Korea
Yoshihito Kawamura, Kumamoto University, Japan
Dmitry Orlov, Professor, University of Lund, Sweden

Outline

Strength, ductility and fatigue

Severe plastic deformation techniques for grain refinement

Improvement of fatigue properties of light metals

Fatigue of Mg alloys – effect of severe plastic deformation and grain refinement

[H. Mughrabi, Int. J. of Fatigue (1999)]

Cyclic and Monotonic Strength

- In order to enhance the fatigue performance in both high cyclic and low cyclic regimes we need to improve both
 STRENGTH and DUCTILITY
- One of these properties is often improved at the expense of the other
- SPD, in principle, can give rise to improvement of both Strength and Ductility

 $\Delta \mathcal{E}_t$

 $\frac{\sigma_f}{\Sigma}(2N_f)^b + \varepsilon_f'(2N_f)^c$

[Y. Estrin, A. Vinogradov, Int. J. Fatigue (2009)]

Hall-Petch relationship: clue for strength enhancement

Severe Plastic Deformation – technique of choice for grain refinement

- 1972, V.M.Segal, Minsk, USSR Equal Channel Angular Pressing
- 1986, V.V. Rybin, Large Plastic Deformations and Fracture of Metals Mechanisms of grain refinement
- 1988, R. Z. Valiev et al., Dokl Akad Nauk SSSR

ECAP is much more efficient in straining than rolling and furthermore the dimensions of the working billet do not alter!

Severe Plastic Deformation Techniques

• A broad variety of severe plastic deformation is available nowadays

 Up-scaling is still an issue, but technologically available solutions have been proposed

[Y. Estrin, A. Vinogradov, Acta Mater (2011)]

Enhancement of fatigue of Titanium

Ultrafine grained Ti-6Al-4V (Eli)

[L. Saitova et al., Mat Forum (2008)]

Mg Alloys

Fine grain AZ31 Alloy

[Zuberova et al., Met Mat Trans A (2007)]

[Orlov et al., Acta Mat (2011)]

[D. Nugmanov et al., Metals (2015)]

Severe Plastic Deformation of Mg-Zn-Zr alloy ZK60. Integrated Extrusion +ECAP

ND ND (d) (a)Max = 2.2Max = 1.3 Conical Section |PC Section pø σ 1.00 2.00 3.00 ED 4.00 TD @ 5.00 (1010) {0002} Weak texture , (c) ND (f) ND 70 μm grain size (coarse grain) Max = 4.3 Max = 6.0 Strong texture, ED 2 μm grain size after IE (fine grain) 1.00 2.00 3.00 00 (0002) 5.00 {1010}

Orlov et al, Acta Mater. 2011

Improvement of monotonic and fatigue properties

[Orlov et al., Acta Mater, 2011]

Fatigue Fractography

Stable crack **Basal slip**

Fatigue crack propagation

Key importance of twinning-dislocation Interaction

Microstructure (Extrusion)

Microstructure

Spectrum of Tensile Stress-Strain Curves

Effect of warm SPD on Fatigue of ZK60 alloy

Properties of biodegradable alloys

Corrosion Properties

Impedance technique

Standard Saline solution , pH=7.0

T=37 °C

Alloy	Composition	Corrosion rate, mm/year	Surface roughness, Sq, μm ²
ZK60 Integrated Extrusion + ECAP	Mg-6Zn-0.5Zr	1.01±0.04	3.431
ZK60 MIF 400 C	Mg-6Zn-0.5Zr	0.95±0.01	4.665
ZK60 MIF 300 C	Mg-6Zn-0.5Zr	0.73±0.02	3.344
Mg-4Zn	Mg-4Zn	0.71±0.01	7.168
ZX40 (A) ECAP	Mg-4Zn-0.16Ca	1.36±0.02	3.344
ZX40 (B) ECAP	Mg-4Zn-0.56Ca	1.30±0.12	5.084
ZX50 (XHP) Extruded	Mg-5Zn-0.25Ca	0.24±0.02	1.245
WZ21 (extruded)	Mg-1.65Y-0.85Zn-0.25Ca	0.85±0.07	3.246

Fatigue and Corrosion Fatigue of Biodegradable Alloys

Corrosion Fatigue Fractography

- Environment-affected fatigue crack initiates at the surface
- Corrosion process under cyclic stress promotes crack initiation even at very low stress
- Once initiated, the crack dominates the distribution of local stresses and propagates very fast regardless of a particular microstructure of the alloy

LPSO Mg97Y2Zn1

Tsushida et al, Mat Sci Forum (2007)]

[M. Okayasu et al, MSEA (2016)] ²

Conclusions and Open Questions

- ✓ HCF performance of magnesium alloy ZK60 after processing by integrated extrusion+ECAP improves significantly to of 160 MPa, which is about three times larger than the value for the initial material.
- ✓ The observed enhancement of endurance and fatigue strength is related to the increase of ductility and ultimate tensile strength as a result of the integrated processing and grain refinement.
- ✓ Nature of fatigue in Mg alloys
 - Asymmetry of the plastic hysteresis ???
 - Role of dislocation –twinning interaction ?
 - o De-twinning??
 - Nature of the Bauschinger effect and the role of microsplasticity ????
 - o LPSO???