ALMA FORUM 2016 (2016.08.09@KYOTO)

Materials Processing for Light Metals with Meso-scale Structures; Porous Metals

Makoto Kobashi Dept. Mater. Sci. and Eng. Nagoya University

Outline

- Introduction:
 - Porous structures in nature
 - Man-made porous metals
- Conventional processing for making porous aluminum
 - Precursor method, Spacer (Space holder) method
- Processing for high-melting- temperature porous aluminides
 - Reactive precursor method
 - Variety of porous structure
- Summary

Introduction... porous structures in nature

When a modern man builds large load-bearing structures, he uses dense solids; steel, concrete, glass. When nature does the same, she generally uses porous materials; wood, bone, coral. There must be good reasons for it. Prof. M.F.Ashby, University of Cambridge

The thigh bone

Designed for both maximizing bending and buckling strength and minimizing weight.

Aligned along the loading direction

The skull

Designed for absorbing impact energy to protect your brain.

Sandwich structure.

Introduction... porous structures in nature

When a modern man builds large load-bearing structures, he uses dense solids; steel, concrete, glass. When nature does the same, she generally uses porous materials; wood, bone, coral. There must be good reasons for it. Prof. M.F.Ashby, University of Cambridge

The moisture in the air condenses on snail shell surface, and repels oily dirt.

The hollow fur of the polar bear provides excellent **thermal insulation** from the cold.

Man-made porous Al: Impact energy absorber

Closed cell structure

Large deformation at a constant stress level is an ideal property for a impact energy absorber.

Man-made porous metals and their functions

The porous metal is a kind of nature inspired materials, and can be classified according to shape and size of the pores.

Category	Closed cell (Equi-axed)	Lotus cell (uni-directional)	Flat cell (Lamellar)	Open cell (Sponge)	Open cell (Nano)
Cross-section					120 mm
Functions	High damping capacity, Impact energy absorption, High specific modulus	Fluid Permeability, High specific modulus, High damping capacity	Low thermal conductivity	High liquid absorbency, Fluid permeability, Capillary force, Acoustic absorption	Catalytic property, High liquid absorbency, Large surface area

Fabrication route of porous aluminum by precursor method (Closed cell structure)

20 mm

Blowing behavior of plate-shape precursor heated by an induction coil

Foamed in hollow components

Foamed in a star-shape mold

Porous Al filled in a hollow tube

Fabrication route of porous aluminum by spaceholder method (open cell structure)

Limitations of conventional process Material

- Applicable to only low melting point AI alloys (no chance for high-melting-point <u>aluminide intermetallics</u>)
 - Sample should be melted
 - Appropriate blowing agents or spacer powder are not available.

Processing

- Limited sample size
 - limited by furnace size
- Difficult to fill AI hollow components with porous AI
 - Processing temp. is the melting point of aluminum

TiAl, Al₃Ti

Reactive precursor process

Combustion reaction: a strong exothermic reaction between elemental powders that synthesizes ceramics or intermetallics.

Schematic illustration of combustion reaction between Al and Ti

Combustion foaming behavior

Reactive precursor process

In situ observation of foaming of Al-Ti by X-ray

Transmission images of a precursor by X-ray during the reaction between Al and Ti

Exothermic agent addition

Exothermic agent (B_4C) addition						
0 vol%	5 vol%	10 vol%				
		LO. am				

Reactive process applied to spacer process

Self-propagating foaming

One of the advantages of the reactive process is that the foaming behavior self-propagates throughout the

Self-propagation foaming

- Energy saving
- Long or large scale products
- Direct synthesis in hollow component

10mm

What we expect for LASER...Ignition tool

Laser Precursor Low melting point hollow tube

> Selective heating of precursor in a hollow component

Various morphology achieved by reactive process

Powder ingredients

Closed pore

Flat-disc pore

Hierarchical pores

3mm Pore

Surface pores

Hollow/porous hybrid

Summary

- Porous metal is a new class of materials with various unique properties. The most fascinating feature of porous metal is that the properties can be controlled by the shape, size and fraction of the pores.
- Reactive precursor process has been studied and various cell morphologies has been achieved so far. The porous metals obtained by this method can be applied to various engineering fields.

Thank you for your kind attention!