

Research Activities on Magnesium Alloys in Korea

Kwang Seon Shin

Chairman, Korea Magnesium Technology Research Association

Professor and Director Magnesium Technology Innovation Center School of Materials Science and Engineering Seoul National University, Seoul 08826, Korea

Introduction

- Research Activity at Magnesium Technology Innovation Center, Seoul National University
- **WPM Magnesium Project**
- Development of Corrosion Resistant Nonflammable Mg Alloys at KIMS

Magnesium

マグネシウム

Magnesio

마그네슘

Magnesium

магнезия

Magnesium Crown Formed in the Pidgeon Process

Magnesium Consumption by Application

Magnesium Consumption by Country (2012)

Jnit: kt, %)

Prospect of World Demand of Primary Mg Ingot (2020)

Korea Magnesium Industry 2013, KMTRA

Magnesium Consumption in Korea

POSCO Mg Business Overview

POSCO Twin Roll Cast 2,000mm Magnesium Sheet

POSCO Twin Roll Cast 2,000mm Magnesium Sheet

Application of POSCO Mg Sheet to Automotive Body

Sep. 2014, SM7
Nova : POSCO Mg
Plate to Luggage
Retainer

 World First Application of POSCO Mg Plate to Commercial Vehicle

 ■ Luggage Retainer : 61% Lightweight
■ Steel (3.6kg) → Mg Sheet (1.4kg)

- Porsche 911 GT3 RS Roof (Geneva Motor Show, March 2015)
- Lower Center of Total Vehicle's Mass
- Increase Safety Handling of Vehicle

High Performance Magnesium Alloys

- Low Cost
- High Formability
- Corrosion Resistance
- High Strength
- Nonflammability
- Isotropic Mechanical Properties
- Low Density
- High Modulus

Research Activities at Magnesium Technology Innovation Center

Development of Advanced Mg Alloys

- Computer Simulation of Stable Phase Formation and Flow/Solidification Behavior by Thermodynamic Calculations
- High Strength/High Formability Alloys
- High Temperature Alloys
- Corrosion Resistant Alloys and Biomaterials
- Characterization of Microstructure/Texture and Mechanical Properties
 - > Prediction of Deformation Behavior by VPSC-GA Simulation
 - Analysis of Microstructure/Texture, Dislocation, Twin
 - Manufacturing and Characterization of Mg Single Crystal
 - Mechanical and Corrosion Behavior
 - Characterization of Creep and Fatigue Properties
- Development of Strip Casting/Extrusion/Rolling Processes
- Semi-Solid Processing of Mg Alloys
- Surface Treatment: Plasma Electrolytic Oxidation Coating
- Development of Mg Die Casting Components for Automobile and Electronic Industries

Development of High Strength Magnesium Sheet with High Formability

Twin Roll Casting Process

Schematic Diagram of Twin Roll Casting

- Advantages
 - Low Production Cost
 - ▹ Fine Grain Size
- Casting Defects
 - Centerline and Inverse Segregation
 - Inclusion and Porosity
 - Surface Cracking and Oxidation
 - Sticking-related Defects

Solidification Behavior & Segregation

- Development of New Mg Alloys for TRC Process
- Optimization of Processing Parameters

P. Thomas, Continuous Casting of Aluminium Alloys, Institute of Physic, 2003, UK, 26-47

Manufacturing Process for TRC Plates

- **Fabrication of TRSC Mg-6Al-0.3X Plates**
 - ► Thickness: 3.0~3.3mm
 - ► Width: 50~65mm

Development of New TRC Mg Alloys with Low Segregation & Improved Formability

Simulation of Liquid Fraction During TRC Process

Microstructure of TRC Mg-6Al-0.3X Alloys

- Segregation Factors
 - ► Freezing Range
 - ► Second Phase
- ► Solidification Behavior
- ► Partition Coefficient

	AS60		AJ60	and a standard was	AZ60	Mg Alloys	Centerline Segregation %
						A6	1.9
	Segregation 1	- Summer Charles			AX60	2.1	
			7		AC60	2.0	
Segi			Cognogation		AS60	2.7	
		Segregation		Segregation		AJ60	2.2
	ی <mark>500µm</mark> J		500µm,		ر <mark>500µm</mark>	AZ60	3.4

Centerline Segregation Area and Melt to Roll Nip Distance

Samples of Mg-6Al-X Alloys after Erichsen Tests

Procedure for VPSC-GA Simulation

Activities of Deformation Modes (Pre-heating: 350°C for Rolling)

Deformation Modes

- For the second secon
- Compression: Mainly Basal <a> Slip & Tensile Twin Activated

Activities of Deformation Modes (Pre-heating: 450°C for Rolling)

Deformation Modes

- > Tension: Significant Increase in Activities of Basal and <c+a> Slip
- Compression: Mainly Basal <a> Slip & Tensile Twin Activated

Conclusions

- Thermodynamic Properties
 - > AZ60 alloy has the largest solidification range.
- Simulation Results of TRSC Process
 - ► AS60 and AZ60 show high segregation tendency.
- Centerline Segregation Tendency
 - > AZ60>AS60>AJ60>AX60>AC60>A6
- Mechanical Properties and Formability
 - > AX60 and AJ60 show good combination of tensile properties and Erichsen values with weaker basal texture.
- Effects of Rolling Condition on Texture and Formability
 - Increase in Pre-heating Temp.: Decrease in Max. Intensity of (0002) and Significant Increase in Erichsen Values.
- Deformation Mode
 - > Increase in Pre-heating Temp.: Increase in Activity of Non-Basal Slip
 - > There exist some relationships between Erichsen value and CRSS ratio.

WPM Mg Program;

Structure and Sheet Technology

WPM (World Premier Material) Project

R&D Project for 10 world best materials			
(2010~2019), New market creating	Characteristics		
ed, Break through, Open innovation	Philosophy		
(2010~2019), New market creating ed, Break through, Open innovation	Characteristics Philosophy		

WPM Mg Project

+ Mg material R&D project for the super-light vehicle

• Improving the technology level on alloy & application Tech. from initial basic study to commercialization

+ **Project group**

+ Mg Sheet Material with High Properties Specialized in Vehicle Development

WPM Mg Project System

+ 21 Organizations for the project

WPF

Super-light Uehicle

Technology Development Structure

HYUNDRI

쌍용까동차

Volkswagen

Super-light Uehicle

Principal Results (Sheet Technology)

Seoul National University & POSTECH

+ New Alloy: Sheet

Development of new alloy with high strength & formability

- Analysis of plastic deformation behavior and texture
- Analysis of recrystallization behavior

Alloy design optimization using VPSC computer simulation

POSCO

- Wide sheet casting & rolling +
- Development of rolling technology
 - Width: casted coil 2,000mm, rolled coil 1,270mm
 - Thickness: 6mm ~ 0.15mm
- Commercialization to the development of a wide sheet and thin plate

EOLAB roof & dash panel

Korando C Speaker cone

GT3 RS roof

Development of Rolling & after-treatment technology

Continuous rolling process of width 2,000mm casted coil

POSCO

Mg Material 850 Project for the Super-light Uehicle

+ Sheet casting & rolling (E-form[®])

- : low fraction of center segregation, high fraction of twins, weak texture
- : distributed thermally stable particles

SUGNWOO HITECH

Development of stamping technology

- Warm forming die design, Hemming
- Development of car body parts
 - Reinforcement center floor, Hood assembly

Optimum design

Prototype manufacturing

Development of hemming process

AUSTEM

+ Development of car body part

Development of stamping technology

- Optimization of mold design

• Development of car body parts

- Rear seat back frame, Cross car beam

Optimum design

Prototype manufacturing

RIST & KITECH

Development of joining Technology

- Evaluation of weld zone: Dynamic Properties, Strength, etc.

✓ Spot welding

- Dome type electrode

<Electrode life time: 20(welds)>

Improvement of Electrode life time by shape change

16

- Radius type electrode

(+)(-)

<Electrode life time: 80(welds)>

✓ Laser welding

- YS:188MPa - TS: 270MPa

- EI: 5.3%

✓ CMT welding

- YS:177MPa - TS: 252MPa - EI: 8.5%

* Bare metal YS:220MPa TS: 280MPa EI: 12%

✓ FSW welding

- YS: 132MPa - TS: 228MPa - EI: 2.8

✓ MIG welding

- YS: 178MPa - TS: 231MPa - El: 3.1%

38 / 26

RIST & Noroo Coil Coatings & KC Chemical

+ Surface Treatment

Development of surface treatment

- Development of chemical conversion coating process
- Development of plasma electrolytic oxidation

✓ Improvement of coating quality by new pretreatment

Better quality by acid etching & desmut

✓ Comparison with various surface treatment

- Plasma electrolytic oxidation (PEO)

<Cross cut test>

<Cycle corrosion test 10 Cycle>

<SST 600hr>

- Heat treatment with humidity (under study)

<Cross cut test>

Commercialization

Commercialization: Mg Luggage retainer

Renault Samsung Motors New SM7

- Weight
- steel: 3.6 kg
- Mg: 1.4 kg

Commercialization: Mg Roof, Dash panel

Renault EOLAB

- Weight reduction
 - roof: 55%
 - dash lower: 60%

Corrosion Resistant Non-flammable Alloys (SEN alloy)

Korea Institute of Materials Science (KIMS)

Synergy Effect of Ca and Y Addition

Korea Institute of Materials Science

Non-flammability

Korea Institute of Materials Science

< Non-flammability mechanism of AZ-Ca-Y alloys>

New Non-flammable Alloys

Oxidation Behavior

<SEN-9 : AZ91-0.3Ca-0.1Y>

Corrosion Behavior

SEN-9

AZ91D

Corrosion Behavior

After immersion for 3 day in 3.5 wt% NaCl solution at RT.

(a) AZ91D (b) SEN-9 (c) ALDC

<SEN-9 : AZ91-0.3Ca-0.1Y, ALDC : Al-11Si-2.5Cu>

Die-casting

10%

S Korea Institute of Materials Science

KI

AI/Mg profiles for extrusion

Lower skin Upper skin

GM Door Inner Panel (Die cast)

Korea Institute of Materials Science

Benefits

- Reduced part count
- Fewer manufacturing steps
- 50% less embodied energy
- 50% less weight
- Improved fuel economy

Magnesium stamped

- 단일부품의 die casting

FAA Test & Mg Seat Frame

Korea Institute of Materials Science

KI

Mg Extrusion ; Seat Frame

KI

Korea Institute of Materials Science

Backrest structure up to appro. 20% as welded subassembly

(Source: [1])

- Development of High Strength Magnesium Alloys with High Formability at Magnesium Technology Innovation Center at SNU
- WPM Magnesium Project
 - TRC Mg Sheet with 2,000mm Width
 - Forming, Joining, and Surface Treatment Technology
 - Applications: Hood, Retainer
- Development of Non-flammable Mg Alloys at KIMS

The Magnesium Age

THE MAGNESIUM AGE is just around the corner!