

Ultrafine grained titanium and magnesium alloys for permanent and bioresorbable medical implants

Yuri Estrin

Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Australia and National University of Science & Technology "MISIS" Moscow, Russia E-mail: yuri.estrin@monash.edu

ALMA Meeting, Kyoto, 6 August 2016

Aims of Research

- Determine the effect of grain refinement by severe plastic deformation on mechanical properties and biocompatibility of titanium and magnesium alloys
- Identify the effect of grain refinement on surface properties (roughness) of the materials with polished and modified surfaces
- Assess the effect of surface modification on mechanical properties and cell response of titanium and magnesium alloys with different structure

MOST POPULAR TECHNIQUE: EQUAL CHANNEL ANGULAR PRESSING (ECAP)

Property profile of ECAP-processed Cu

ECAP EQUIPMENT

MONASH University Scientifics, Inc.

Enhanced Strength and Biocompatibility of Titanium (Permanent Implant Applications)

Grain refinement and mechanical property improvement of Grade 2 CP Titanium

Grain structure of ECAPmodified titanium

Tensile curves of coarse-grained (CG) and ultrafine-grained (UFG) titanium

Correlation between fatigue strength and UTS

Surface topography

Proliferation of fibroblast cells on Ti CP4

UFG CG I. Semenova, R. Valiev, H. Rack, T. Lowe et al., 2008

MONASH University

Nanostructured Ti Shows Distinctly Greater Preosteoblastic Cell Growth in vitro

MC3T3-E1 cells from mice embryos

Stem cell attachment and growth

Incubation time

Bacteria adhesion: S. aureus (left) and P. aeruginosa (right)

Animal test

4 week implantation Rabbit tibia

Ji-Hoon Jo, Hyon-Ee Kim, SNU

2D image (Histology)

Conventional Ti

ECAP Ti

2D image (Micro CT)

3D image (Bone in Volume of Interest)

Bone volume %

BIC (Bone-to-Implant contact) %

Microstructure

Gr2AsR

Gr2ECAP (I)

Condition	Grain size, μm
Gr2AsR	20
Gr4AsR	30
Gr2ECAP (I)	0.25
Gr4ECAP (I)	0.23
Gr4ECAP (II)	0.1

Gr4AsR

Gr4ECAP (I)

Gr4ECAP (II)

Alex Medvedev, PhD thesis, 2016 Monash University 22

Mechanical properties

Condition	Average grain size, μm	UTS*, MPa	YS*, MPa	Elongation**, %
Gr2AR	20	480	350	29
Gr2ECAP (I)	0.25	850	750	18
Gr4AR	30	765	620	21.5
Gr4ECAP (I)	0.23	1030	940	18.5
Gr4ECAP (II)	0.1	1275	1130	13
Ti-6Al-4VAR^	3-4 (α-grains) [×]	940-970	840-900	16-20
Statistical error does not exceed: * 5-7MPa ** 1-2%; Statistical analysis is not applicable to Ti-6AI-4V data				

Alex Medvedev, PhD thesis, 2016 Monash University

Surface after SLA treatment

Surface after SLA treatment

Gr2ECAP(I)

Magnification x25,000

Gr2AsR

Gr4ECAP(I)

Gr4ECAP(II)

Alex Medvedev, PhD thesis, 2016 Monash University 25

Fatigue properties

T = 25°C, Air, R = -1

Polished surface

SLA-treated surface

Arrows **1** indicate an increase of fatigue life of titanium after ECAP-processing compared to as-received coarse-grained counterparts

Alex Medvedev, PhD thesis, 2016 Monash University

Surgical and dental implants from ultrafine-grained Ti

Development of a new lightweight structure for spine fixation

[Timplant Co. , www.timplant.cz]

From I. Semenova et al., TMS 2008 Annual Meeting, New Orleans, USA MONASH University

Mg-based bone implants

Possible applications of Mg

Mg : Corrosion

 $Mg + 2 H_2O = Mg(OH)_2(s) + 2 H_2(g)$

Table 8.2 The standard EMF series				
Metal \longrightarrow Metal Ion	Standard Electrode Potential (V)	anon a nonse a nonse Noving electron e trans		
$Au \longrightarrow Au^{3+}$	+1.50	1		
$Pt \longrightarrow Pt^{2+}$	+1.2	all of the part of the		
$Pd \longrightarrow Pd^{2+}$	+0.99	be ven not ben no		
$Ag \longrightarrow Ag^+$	+0.80	here the oregen cone		
$Cu \longrightarrow Cu^{2+}$	+0.34	beb location become		
$\mathrm{H} \longrightarrow \mathrm{H}^+$	0	Increasingly inert		
$Ni \longrightarrow Ni^{2+}$	-0.25	5.26		
$Co \longrightarrow Co^{2+}$	-0.28	Increasingly active		
$Fe \longrightarrow Fe^{2+}$	-0.44			
$Cr \longrightarrow Cr^{2+}$	-0.74	I the mountimer, electric		
$Al \longrightarrow Al^{3+}$	-1.66	S. concentration; of and		
$Ti \longrightarrow Ti^{3+}$	-2.00	are lied toppeople with well well		
$Mg \longrightarrow Mg^{2+}$	-2.36	sconech) (nox yr' ions		

Coating

Magnesium

MONASH University

Courtesy Prof. Hyoun-Ee Kim

Alloying element	Abbreviation letter
Aluminum	А
Bismuth	В
Copper	C
Cadmium	D
Rare earth metals	(E)
Iron	F
Thorium	Н
Zirconium	K
Lithium	Ť.
Manganese	M
Nickel	N
Lead	Р
Silver	2
Chromium	R
Silicon	S
Tin	T
Yttrium	W
Antimony	
Zinc	

AZ31, AZ91..

ZK60, ZM21..

WE43

Strength retention

Hyoun-Ee Kim, SNU Calvarias of Rat for **up to 12 weeks** MONASH University

Bare HA coated

Research at Seoul National University, Prof. Hyoun-Ee Kim Corrosion resistance of Mg – Role of coating

Research at Seoul National University, Prof. Hyoun-Ee Kim

Rabbit femoral shaft, 4 weeks

LX41: Processing schedule

Saurabh Nene, PhD Thesis 2016 (Monash-IITB)

Property profile of alloy LX41 after rolling and annealing

Elongation to Faliure (%)

Estrin et al., Mater. Lett. 173, 252 (2016)) (Materials Today, April 2016)

Obtaining porous Ti and Ti/Mg

Mg

100µm

Ti40Mg20Si40 after leaching

Porous titanium for medical implants

S.W. Kim et al., "Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer", Mater. Sc. Eng.: C 33, 2808 (2013).

GENERAL CONCLUSION: There is a lot of scope for research and development in the burgeoning area of medical *implants – both permanent and* bioresorbable

Thank you for your attention!

yuri.estrin@monash.edu

