Environmentally friendly conversion treatments of magnesium alloys -- taking examples of corrosion protection and scrap recycling

Uan, Jun-Yen

National Chung Hsing University, Taichung, Taiwan Email: jyuan@dragon.nchu.edu.tw

- Chemical conversion coating treatment/ energy-saving
- Chromate ^[1]/ Cr⁶⁺ / Waste ^[2]
- Cerium ^{[3]/} phosphate ^{[4]/} Vanadate ^{[5]/} stannate ^[6], etc/ Waste ^[2]

4 corrosion resistance

Environmental friendly treatment / low pollution →carbonic acid solution

treatment for Aluminum and other Metals, Oslo, Norway, 2004, pp. pp. 1-4.

[6] M. A. Gonzalez-Nunez, C. A. Nunez-Lopez, P. Skeldon, G. E. Thompson, H. Karimzadeh, P. Lyon and T. E. Wilks, *Corrosion Science*, 1995, 37, 1763-1772.

an, L. L. Strenden and V. M. Coler, in redicting theory conjective on distribution of premary pre-

Carbonic acid aqueous for conversion (hard) coating on Mg alloy / corrosion protection

- J.K. Lin, K.L. Jeng and <u>J.Y. Uan</u>*, *Corrosion Science*, 53 (2011), pp. 3832-3839.
- <u>J.Y. Uan</u>*, J.K. Lin and Y.S. Tung, *Journal of Materials Chemistry*, 20 (2010), pp.761-766.
- B.L. Yu, X.L. Pan and <u>J.Y. Uan</u>*, *Corrosion Science*, 52 (2010), pp. 1874-1878.
- J.K. Lin and <u>J.Y. Uan*</u>, *Corrosion Science*, 51 (2009), pp. 1181-1188.
- <u>J.Y. Uan</u>*, B.L. Yu and X.L. Pan, *Metallurgical and Materials Transactions A*, 39A (2008), pp. 3233-3245.
- J.K. Lin, C.L. Hsia and <u>J.Y. Uan</u>*, *Scripta Materialia*, 56 (2007), pp. 923-925.

Photosynthesis is a process used by plant to convert <u>light</u> energy into chemical energy (<u>sugars</u>) which are synthesized from <u>carbon dioxide</u> and <u>water</u>.

Preparing aqueous carbonic acid (HCO₃^{-/} CO₃²⁻)

Carbonic acid aqueous (pH ~4) at 50 °C $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

Away from sample

 $HCO_3^- + H^+ (pH \sim 4)$

 $\frac{\text{Sample's surface}}{\text{Mg(AI)} + 2\text{H}_2\text{O} \rightarrow \text{Mg}^{2+}(\text{Al}^{3+}) + 2\text{OH}^- + \text{H}_2}$

J.Y. Uan*, B.L. Yu and X.L. Pan, Metallurgical and Materials Transactions A, 39A (2008), pp. 3233-3245.

工程學系

[HCO₃]/([HCO₃]+[H₂CO₃])

[CO₃²⁻]/([CO₃²⁻]+[HCO₃])

Sample's surface

pH vs. percentage of CO₃²⁻ / HCO₃⁻

100

90

 $Mg(AI) + 2H_2O \rightarrow Mg^{2+}(AI^{3+}) + 2OH^{-}+H_2$

pН

$Mg_{4.38}Zn_{0.22}Al_2(OH)_{13.19}CO_3 \cdot mH_2O_3$

Salt spray test (ASTM B117)

2 hr conversion treatment / salt spary 36 hr / corro. spot <5 %</p>
0.5 hr conversion treatment / salt spary 12 hr / corro. spot <5 %</p>
J.K. Lin, et al, Scripta Materialia, 56, 2007, p.923.
.J.K. Lin et al., Corrosion Science, 51, 2009, p. 1181.

Carbonic acid conversion treatment / application examples

Chemical conversion hard coating (CaCO₃)

 $CaCO_{3}(s) + H_{2}O(l) + CO_{2}(g) = [Ca^{2+} + 2HCO_{3}^{-}] (aq)$

$Mg + H_2O = Mg^{2+} + 2OH^- + H_2$

J.Y. Uan*, B.L. Yu and X.L. Pan, Metallurgical and Materials Transactions A, 39A (2008), pp. 3233-3245.

Yu, Pan, and Uan*, Corrosion Science, 52 (2010), pp. 1874-1878.

Calcium ions in the carbonic acid solution

J.Y. Uan*, B.L. Yu and X.L. Pan, Metallurgical and Materials Transactions A, 39A (2008), pp. 3233-3245.

日本中興共歩 材料科學與工程學系

1. Surface pH from acid to alkaline due to surf. corro. in carbonic acid

2. Mg^{2+} promotes the coating of $CaCO_3$

Yu, Pan, and Uan*, Corrosion Science, 52 (2010), pp. 1874-1878. 15

Environmentally treatments of Mg alloy scraps: recycling and reuse

Song-Lin Li, Hung-Mao Lin and <u>J.Y. Uan</u>*, *International Journal of Hydrogen Energy*, 38 (2013), pp.13520-13528.

S.H. Yu, <u>J.Y. Uan</u>* and T.L. Hsu, *International Journal of Hydrogen Energy*, 37 (2012), pp. 3033-3040

J.Y. Uan*, S.H. Yu, M.C. Lin, L.F. Chen and H.I. Lin, *International Journal of Hydrogen Energy*, 34 (2009), pp. 6137-6142.

J.Y. Uan*, M.C. Lin, C.Y. Cho, K.T. Liu and H.I Lin, *International Journal of Hydrogen Energy*, 34 (2009), pp. 1677-1687.

<u>J.Y. Uan</u>*, C.Y. Cho and K.T. Liu, *International Journal of Hydrogen Energy*, 32 (2007), pp. 2337-2343.

Y. F. Lung, Y.F. Syu, M.C. Lin and <u>J.Y. Uan</u>*, **Converting waste magnesium scrap into anion-sorptionable nanomaterials**, *RSC Advances* (2014), accepted.

Post-consumer Mg scraps

Post-consumer Mg scrap H₂ generator

Low grade Mg scrap Anion-sorptional mater. or catalyst

Currently, <u>low-grade magnesium scraps</u> and <u>post-consumer Mg alloys</u> (e.g., coated (Cu, Ni) magnesium) are not recycled.⁹

> As an additive in aluminum alloys As an desulfate agent in steel metallurgy

composition	Al	Si	Fe	Ni	Cu	Zn	Mn	Mg
wt.%	12.6	0.6	0.13	0.015	0.1	0.77	0.19	Bal.
AZ 91D alloy (ASTM B93)	8.5 ≀ 9.5	0.08 max	0.05 max	0.001 max	0.025 max	0.45 ₹ 0.9	0.17 ₹ 0.4	Bal.
C 650°C 650°C 000 000 000 000 000 000 000 000 000	12.6	Semi s	solid	L Mg ₁₇ Al ₁₂		- Mg ₂ Al ₃		(AI)
Mg	0 2	0 30	40 A	50 Iuminium,	60 wt%	70	80 90	100 Al

Stainless steel net

Mg/steel couple for H₂ generation

Hydrogen-on-demand

100 W PEMFC Stack

Chemical conversion in pH 1.5 NaCl aqueous at 25 °C

Summary

For AZ Mg alloys, carbonic acid is good for chemical conversion coating treatment.

Ca²⁺/carbonic acid is good for **conversion hard coating** with $CaCO_3$ film on AZ Mg alloys.

Post-consumer Mg scraps/ Hydrogen generator

Recycling fine flake-type Mg waste/anion-sorptionable thin **film can directly form on the surface of the flake**, the Mg waste being able to function to take up fluoride and sulfate anions from waste water.

Thanks for Your Attentions

Metal	Corrosion potential (volts) vs. SCE				
Mg	-1.73				
Mg alloys	-1.67				
Zn	-1.05				
Mild steel, Cd-plated	-0.86				
AI (99.99 %)	-0.85				
Mild steel	-0.78 ΔE = 1.29 V				
Cast iron	-0.73				
Pb	-0.55				
Sn	-0.50 $\Delta E = 2.55 V$				
Stainless steel 316	-0.43				
Stainless steel 304	-0.38				
Cu	-0.22				
Ni	-0.14				
Au	+0.18				
Pt	+0.88				

R. S. Busk, "Magnesium products design", Marcel Dekker Inc., New York (1987), p. 519.

				1.1.1			
Experimental cycle	1	2	3	4	5	Average	
H ₂ generated in 50 min (liter)	19.3	18.8	14.8	8.8	8.4	16.1 ± 7.8	
LGMS consumed in 50 min (g)	18.1	15.7	14.5	7.7	8.6	14.8 ± 7.0	
H ₂ generated/ LGMS consumed (L/g)	1.1	1.2	1.0	1.1	0.9	1.1 ± 0.1	

生命週期評估-盤查資料(Inventory analysis)

Ν	lg scraps	Energy requirement (MJ (kg of Mg) ⁻¹) ^{(kg}	Green warming potential g of CO ₂ equival. (kg of Mg) ⁻¹)	Acidification potential (g (kg of Mg) ⁻¹)	Smog, dross and sludge (g (kg of Mg) ⁻¹)	Dioxins (µg (kg of Mg) ⁻¹))	Energy production (MJ (kg of Mg) ⁻¹)				
Recycling	Albright et al. ⁴³	151 X 5%	19	25	515	0.24	0				
Process	Kiefer et al. 44-45	~8= <u>164</u> X 5%	42	34	Unavailable	Unavailable	0				
Present study	Pt-coated Ti net AISI 304 S.S. net	2 88	10	Unovoilable	27	Unavailable [.]	136.1 ^b				
(H ₂ and energy production)		2.0		Ullavallable			114.7 ^c				
Melging <u>800 W (2.2 Kg scraps), 2.2 hr</u> , 6 <u>.34 MJ</u> (1760 Wh) needed											
6.34 (MJ)		- =	A (MJ)	H ₂ produce electric power							

44 D.L. Albright and J.O. Haagensen, IMA Annual World Conference, International Magnesium Association, Toronto, Canada (1997).

1 (Kg Mg scraps)

45 B. Kiefer, G. Deinzer, J.O. Haagensen and K. Saur, SAE paper no. 982225, (1997).

2.2 (Kg Mg scraps)

46 G. Deinzer, B. Kiefer, J.O. Haagensen and H. Westengen, in "*Magnesium alloys and their applications*", edited by B.L. Mordike and K.U. Kainer, Werkstoff-Informationsgesellschaft mbH, Germany (1998), pp. 119-124.

18

CO₂-2h/pH11.5-different temperature

.Lin and Uan*, Corrosion Science, 51, 2009, p. 1181.40

Surface morphology / cross-section structure

CO₂-2h/pH11.5-2h sample

EPMA-Mapping

hydrotalcite

hydrotalcite in salt water (5 hr)

Layered double hydroxides structure (LDH) $Mg_6Al_2(OH)_{16}CO_3 \cdot 4H_2O$ on Mg alloy

Mg-AI-F⁻ LDH Green Chemistry, 2001, 3, 257–260

- novel solid base catalyst for C–C bond formation
- unprecedented catalytic activity in both the important Knoevenagel and Michael reactions

Yu, Pan, and Uan*, Corrosion Science, 52 (2010), pp. 1874-1878.

Mechanism

Bubbling Ar gas to remove CO₃²⁻

