Program of The 120th Conference of Japan Institute of Light Metals (May 21-22, 2011, Nagoya)

1. Corrosion behavior of Mg-3mass%Al alloy immersed in Na ₂ SO ₄ solution
 Y.Hori , S.Sunada , M.Furui , S.Ikeno , K.Sasaki , S.Saikawa 2. Electrochemical characteristics of Mg-9mass%Al alloy immersed in Na₂SO₄ solution M.Hori , S.Sunada , M.Furui , S.Ikeno , S.Sakaki , S.Saikawa
3. Investigation of corrosion behavior using Mg-Al-Ca-Sr heat-resistant magnesium alloy by electrochemical method S.Saito, S.Sunada, M.Furui, S.Ikeno, S.Saikawa
4. Influence of dent on corrosion resistance for Ni-plated Magnesium alloy
5. Corrosion resistance and age-hardening characteristics of AZ80 magnesium alloy coated by sol-gel based CeO ₂ Y.Harada , S.Kumai
6. Influence of anodizing treatment on corrosion characteristic for AZ91D Magnesium alloy
7. Improvement of corrosion resistance of magnesium alloy by re-anodizing K.Fukuoka , H.Asoh , K.Inokuchi , O.Mizuno , S.Ono
8. Formation of anticorrosive film on magnesium alloy by two step processes R.Kudou , T.Ohmi , M.Sakiyama , T.Ishizaki , M.Sakamoto
 9. Corrosion resistance of paint coating AZ91D magnesium alloy exposured for 20 years in Choshi of the Pacific Ocean climate A.Konno , K.Nishinaka , M.Senzaki , H.Umehara 10. Corrosion characteristics of pure magnesium materials produced by MM-SPS method
Y.Watabe, M.Kubota
11. Influence of mechanical alloying on corrosion resistance and biocompatibility of Ti-HAp composite materials H.Asoh , H.Tanigawa , T.Ohno , M.Kubota , S.Ono
 Titania coating on beta-type titanium alloy by anodizing in concentrated phosphoric acid aqueous solution and its osteoconductivity D.Yamamoto, K.Kuroda, R.Ichino, M.Okido, T. Akahori, M.Niinomi, M.Ueda, M.Ikeda, Y. Koyanagi Influence of temperature on high temperature oxidation of Al-Mg alloys
A.Yamauchi
14. Zincate treatment and electroless nickel-phosphorus plating on binary aluminum alloys K.Murakami , M.Hino , D.Yokomizo , T.Kanadani
15. Zincate treatment and electroless nickel-phosphorus plating on aluminum-magnesium-zinc alloy K.Murakami , M.Hino , S.Ohara , T.Kanadani
16. Self-healing corrosion protective polymer coatings for aluminum A.Yabuki , H.Okuno
17. Behavior of hydrogen invading aluminum alloys through second-phase particles G.Itoh, T.Watakabe, Y.Hatano
18. Effect of intermetallic compound particles on the behavior of releasing hydrogen in some aluminum alloys
 M.Nakano , T.Watakabe , G.Itoh 19. Height measurement of steps between neighbor grains with different crystallographic orientation planes after corrosion in ultra high-purity al M.Sato , Y.Takayama , H.Watanabe
20. Effect of chloride concentration and potential on propagation behavior of simulated-pit for aluminum T.Haruna, M.Nishikawa
21. Analysisi of corrosion behavior for alunium and its alloy O.Seri
22. Effect of cations on corrosion behavior of 3000-Al alloy in low Cl- containing solutions M. Sakairi , K.Otani
23. Effect of Mg contents on intergranular corrosion of Al-Mn alloys H.Teramoto, T.Toyama, A.Niikura, A.Fukumoto, Y.Ooya
24. Effects of sulfur oxoacids ion on corrosoion of aluminum alloys Y.Oya, Y.Hara, Y.Kojima
25. Effects of combination of corrosion inhibitors for aluminum alloys in weak alkaline solutions
26. Effect of NaCl, MgCl ₂ and CaCl ₂ on corrosion of Al-Mg-Si alloy
27. Pitting corrosion resistance of brazing sheet clad with Zn content filler in low Cl ⁻ ion concentration atmosphere S.Kuroda, M.Yoshino, S.Iwao, M.Edo
28. Influence of alloying elements on corrosion resistance for pre-coated aluminum fin-stocks Y.Toyoda, Y.Ota, T.Shimizu, K.Tateyama

29. Effect of inner wax on lubricity of pre-coated aluminium sheets
30. Temperature distribution in 1050 aluminum sheet during friction stir spot welding
31. Process of friction reversal stir welding on aluminum alloys
32. Mechanical properties of friction stir welded joint of AZ91D magnesium alloy die cast
D.Nakama, K.Yoshihara, K.Katoh 33. Mechanical properties of friction lap welded AZ61 magnesium alloy joint
34. 5052/6061 aluminum alloy thin sheet friction seam butt welding
W.Nakamura, N.Seo, D.Nakama, K.Katoh 35. Investigation of optimum welding conditions and joint property for friction welding on aluminum alloy deformed by ECAP K.Aoki, S.Yada, E.Endo, K.Kazuyoshi, D. Nakama
36. Consolidation of 1050 aluminum chip by friction welding
37. Influence of rolling conditions on cladding in hot rolling of aluminum alloy
38. Injection molding characteristics by difference of mold material using rapid heating and cooling mold system
 Y.Matsui , H.Yamagata , M.Niikawa , M.Kinoshita , T.Yamawaki , W.Oikawa 39. Effect of flare-crack on heat transfer performance of heat exchanger for room air conditioner Y.Sato
40. Effect of Si content on flow behavior of Al-Si filler alloy during brazing
41. Influence of brazing condition on flow behavior of liquid Al-Si filler between brazed components
42. Aluminum foam, "ALPORAS": Productio n process, properties and applications
43. Performance Estimate of Aluminum Foam for Landing Gear of Smart Lander
44. Investigation of fabricating highly-functional porous aluminum by using ADC12 die-casting
 44. Investigation of fabricating inginy-functional porous autimutin by using ADC12 the-casing 45. Foaming condition on manufacture of ADC12/A1050 porous aluminum by using friction stir welding
46. Fabrication of porous aluminum without using blowing agent by ADC12 aluminum alloy die-casting and the compressive characteristic H.Kato, Y.Hangai, T.Utunomiya, S.Kitahara, O.Kuwazuru, N.Yoshikawa, S.Takahashi
47. Combustion foaming of porous Al-Ti intermetallics made from sheet-type precursor
48. Effect of exothermic agent addition on self-propagating foaming of long-scale Al-Ti intermetallic foam Y.Arakawa, M.Kobashi, N.Kanetake
49. Fabrication of Aluminum Foam through the Melt Route with Adding Mg and Bi
50. Fabrication of lotus-type porous aluminium and clarification of pore formation mechanism T.Ide, Y.Iio, H.Nakajima
51. Control of mechanical properties of aluminum foam by resin coating or boring K.Kitazono, T.Takeda, R.Suzuki
52. Evaluation of compression strength and absorbed energy of porous Al-Si alloy
53. Compression properties of porous Ti6Al4V alloy prepared by spark plasma sintering technique
54. Mechanical properties of biodegradable ceramics / porous titanium composite materials
55. Sound absorption of porous aluminum fabricated by spacer method
56. Corrosion behavior of anti-corrosion treated biomedical porous magnesium in a pseudo physiological environment Lubin JIA , E.Kobayashi , H.Tezuka , T.Sato

57. Development of new refiner using L12 type Al ₅ CuTi ₂ intermetallic particles Y.Watanabe , T.Matsuoka , H.Sato
58. Performance characteristics of Nb-based alloy ultrasonic horn used in aluminum casting applications S.Komarov, Y.Ishiwata
59. Stress-strain curvies fo Al-4.5Cu alloys in mushy zone
60. Effect of trace elements on molten metal oxidation of Al-Mg alloys
61. Rheo-extrusion of Al-7.0%Si-0.36%Mg alloy using semi-solid slurry
N.Mori, Y.Uetani, M.Dohi, K.Matsuda, S.Ikeno 62. Castability of Al-Mg-Si alloy with different magnesium and silicon contents
43. Effect of pre-aging condition on two-step aging of Al-10mass%Si-0.3mass%Mg alloy castings
64. Variation of hardness during aging treatment in Al-10%Si casting alloy with different magnesium contents
65. Variation of hardness during aging treatment in Al-10%Si sand casting alloy with various magnesium contents
66. Fabrication of carbon fiber/ aluminum composites by low pressure infiltration and evaluation of properties
G.Sasaki, Moonhee Lee, Y.B. Choi, K.Sugio, K.Matsugi
67. Fabrication and mechanical properties of Al-based in situ nano-composites reinforced by Al ₂ O ₃ and intermetallic compounds
68. Consolidation and mechanical property of CNF/Al composite powder prepared by compressive torsion process Y.Kume, H. Kimura, M.Kobashi, N.Kanetake
69. Influence of intermetallic phases at bond interface on tensile strength of aluminum / copper clad materials W.Xie, T.Yamaguchi, K.Nishio
70. Effect of Indium addition on MgB ₂ particle-dispersed Al based composite materials
71. Elucidation of Promotive Effect of the AlN Combustion Synthesis Reaction at the Nitrogen Gas Flow Atmosphere Y.Komiya, Y.Seimiya
72. Fabrication and properties of aluminum-phosphorescence based composite materials Y. Watanabe, M. Kubota
73. Microstructure of a hypoeutectic Al-Si alloy containing TiB ₂ cast after mechanical stirring I.Yamamoto, S.Suzuki, K.Oda, H.Okada
74. Effect of heat treatment on Young's modulus and ductility of a hypoeutectic Al-Si alloy containing TiB ₂ S.Suzuki, I.Yamamoto, K.Oda, H.Okada
75. Effect of demolding temperature on aging behavior in Al-Si-Mg alloy cast into sand mold
76. Effect of demolding temperature on aging behavior of Al-Si-Mg alloy poured into permanent mold
77. Microstructure change in AC4CH casting alloy by high temperature and short time solution treatments
78. Computer analysis of microstructure of thin-walled AC4C casting using a bottom pouring plan
Y.Miwa, H.Yamagata, M.Niikawa, K.Kurokawa 79. Properties of aluminum honeycomb core sandwich panel produced by melt drag process
80. Improvement of surface roughness of aluminum alloy strip produced by melt drag process with vertical nozzle
K.Fukudome, H.Furusawa, S.Nishida, M.Motomura 81. Hardness measurement of primary α and eutectic phases in Al-Si-Mg alloy castings modified by strontium
82. Microstructure Evaluation of As-cast Process in gravity casting of AM60 Magnesium alloy
83. Casting of Al-Mg Alloy Strip by a Single Roll Caster Equipped with a Scraper
K.Akitsu , K.Kamakura , T.Haga , S.Kumai , H.Watari
84. Casting of Aluminum Alloy Clad Strip by Using a Vertical Type Tandem Twin Roll Caster Equipped with Scrapers H.Tsuge, T.Ishihara, T.Haga, S.Kumai, H.Watari
85. Effect of Si content and roll separating force on solidified structure in high-speed twin-roll cast Al-Si alloy strips Kim Min-Seok , K.Yoshie , Y.Harada , S.Kumai

86. Casting of Aluminum Alloy Clad Strip Using a Vertical Type Tandem Twin Roll Caster R.Nakamura, K.Shinchi, T.Haga, S.Kumai, H.Watari
87. (Keynote) Intrinsic structural science in aluminium alloys E.Matsubara, K.Higashi, M.Ninomi
88. First-principles study on solute segregation in aluminum symmetric tilt grain boundary T.Uesugi, K.Higashi
89. First-principles study on grain boundary cohesive energies in aluminum R.Shoda, T.Uesugi, K.higashi
90. Thermodynamic evaluation of beta stabilizers using heat of solution calculated by first principles in Ti alloys S.Miyamae, T.Uesugi, K.Higashi
91. Issues of prediction of a phase formation in Ti alloys by using DV-Xα alloying parameters
92. Oxygen removal and microstructural change in deoxidation of NiTi alloys using metallic Ba
93. Strengthening mechanism of Al supersaturated solid solution alloy fabricated by electron beam deposition
94. Synchrotron Radiation Nano Structural Science for Novel Simple Alloying via SPring-8
95. Evaluation of materials by local potential measurements using STM S.Kurokawa
96. Atomic scale observations of crystal lattice defects by positron annihilation spectroscopy K.Inoue, Y.Shirai
97. Evaluation of surface properties of magnesium alloy via electrochemical measurement S.Yagi, A.Sengoku, E.Matsubara
98. High-temperature deformation in magneium binary solid solution alloys
99. Intrinsic behavior of Mn addition in heat-resistant Mg-Al-Ca alloy
T.Homma, K.Oh-ishi, K.Hono, S.Kamado 100. Aging behaviors of Mg-Al-Sn alloys T.Konno, T.Ohya
101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado , S.W. Xu , K.Oh-ishi , T.Homma , K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado , S.W. Xu , K.Oh-ishi , T.Homma , K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy K.Kurimoto , H.Watanabe , T.Uesugi , Y.Takigawa , K.Higashi 103. Mechanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado , S.W. Xu , K.Oh-ishi , T.Homma , K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloys for next-generation air crafts Microtexture evolution during strain-free conditions in martensitic transformation of titanium-base shape memory alloy
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado , S.W. Xu , K.Oh-ishi , T.Homma , K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloy Microtexture evolution during superplastic deformation in AM60 magnesium alloys for next-generation air crafts Microtexture evolution during superplastic transformation of titanium-base shape memory alloy T.Inamura , H.Hosoda Microtexture evolution dispersion strengthened β-titanium alloy for biomedical applications
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado , S.W. Xu , K.Oh-ishi , T.Homma , K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy K.Kurimoto , H.Watanabe , T.Uesugi , Y.Takigawa , K.Higashi 103. Mechanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts Y.Nagasawa , M.Niinomi , M.nakai , K.Hayashi , Y.Itsumi , S.Murakami , H.Oyama , W.Abe 104. Three competing strain-free conditions in martensitic transformation of titanium-base shape memory alloy T.Inamura , H.Hosoda 105. Mechanical biocompatibility of rare earth dispersion strengthened β-titanium alloy for biomedical applications S.Nagai , M.Niinomi , M.Nakai , S.Yonezawa , Xiu Song 106. Process Designing for optimization of electrochemical properties
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado , S.W. Xu , K.Oh-ishi , T.Homma , K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy Mcrotexture evolution during superplastic deformation in AM60 magnesium alloy Mcchanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts Y.Nagasawa , M.Niinomi , M.nakai , K.Hayashi , Y.Itsumi , S.Murakami , H.Oyama , W.Abe 104. Three competing strain-free conditions in martensitic transformation of titanium-base shape memory alloy T.Inamura , H.Hosoda 105. Mechanical biocompatibility of rare earth dispersion strengthened β-titanium alloy for biomedical applications S.Nagai , M.Niinomi , M.Nakai , S.Yonezawa , Xiu Song 106. Process Designing for optimization of electrochemical properties T.Hanawa , K.Kuroda , Y.Tsutsumi 107. Effect of surface roughness on fabrication of hydroxyapatite film on surface of Ti-29Nb-13Ta-4.6Zr using a MOCVD process
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado, S.W. Xu, K.Oh-ishi, T.Homma, K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy K.Kurimoto, H.Watanabe, T.Uesugi, Y.Takigawa, K.Higashi 103. Mechanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts Y.Nagasawa, M.Niinomi, M.nakai, K.Hayashi, Y.Itsumi, S.Murakami, H.Oyama, W.Abe 104. Three competing strain-free conditions in martensitic transformation of titanium-base shape memory alloy T.Inamura, H.Hosoda 105. Mechanical biocompatibility of rare earth dispersion strengthened β-titanium alloy for biomedical applications S.Nagai, M.Niinomi, M.Nakai, S.Yonezawa, Xiu Song 106. Process Designing for optimization of electrochemical properties T.Hanawa, K.Kuroda, Y.Tsutsumi 107. Effect of surface roughness on fabrication of hydroxyapatite film on surface of Ti-29Nb-13Ta-4.6Zr using a MOCVD process T.Gozawa, K.Saitou, M.Niinomi, M.Nakai, T.Gotou, Tu Rong 108. Effect of grain size on mechanical properties of a biocompatible beta-type titanium alloy
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado, S.W. Xu, K.Oh-ishi, T.Homma, K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy K.Kurimoto, H.Watanabe, T.Uesugi, Y.Takigawa, K.Higashi 103. Mechanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts Y.Nagasawa, M.Niinomi, M.nakai, K.Hayashi, Y.Itsumi, S.Murakami, H.Oyama, W.Abe 104. Three competing strain-free conditions in martensitic transformation of titanium-base shape memory alloy T.Inamura, H.Hosoda 105. Mechanical biocompatibility of rare earth dispersion strengthened β-titanium alloy for biomedical applications S.Nagai, M.Niinomi, M.Nakai, S.Yonezawa, Xiu Song 106. Process Designing for optimization of electrochemical properties T.Hanawa, K.Kuroda, Y.Tsutsumi 107. Effect of surface roughness on fabrication of hydroxyapatite film on surface of Ti-29Nb-13Ta-4.6Zr using a MOCVD process T.Gozawa, K.Saitou, M.Niinomi, M.Nakai, T.Gotou, Tu Rong 108. Effect of grain size on mechanical properties of a biocompatible beta-type titanium alloy R.Kanekiyo, K.Narita, M.Niinomi, M.Nakai 109. Development of Young's modulus changeable titanium alloys for spinal fixation
101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado , S.W. Xu , K.Oh-ishi , T.Homma , K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy K.Kurimoto , H.Watanabe , T.Uesugi , Y.Takigawa , K.Higashi 103. Mechanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts Y.Nagasawa , M.Niinomi , M.nakai , K.Hayashi , Y.Itsumi , S.Murakami , H.Oyama , W.Abe 104. Three competing strain-free conditions in martensitic transformation of titanium-base shape memory alloy T.Inamura , H.Hosoda 105. Mechanical biocompatibility of rare earth dispersion strengthened β-titanium alloy for biomedical applications T.Hanawa , K.Kuroda , Y.Tsutsumi 107. Effect of surface roughness on fabrication of hydroxyapatite film on surface of Ti-29Nb-13Ta-4.6Zr using a MOCVD process T.Gozawa , K.Saitou , M.Niinomi , M.Nakai , T.Gotou , Tu Rong 108. Effect of grain size on mechanical properties of a biocompatible beta-type titanium alloy M.Neita and properties of a biocompatible beta-type titanium alloy M.Nakai , M.Niinomi , M.Nakai , M.Niinomi , M.Nakai 109. Development of Young's modulus changeable titanium alloys for spinal fixation M.Nakai , M.Niinomi 110. Effects of chemical composition and aging on mechanical properties of Ti-Mo-Al biomedical shape memory alloys
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado, S.W. Xu, K.Oh-ishi, T.Homma, K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy K.Kurimoto, H.Watanabe, T.Uesugi, Y.Takigawa, K.Higashi 103. Mechanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts Y.Nagasawa, M.Niinomi, M.nakai, K.Hayashi, Y.Itsumi, S.Murakami, H.Oyama, W.Abe 104. Three competing strain-free conditions in martensitic transformation of titanium-base shape memory alloy T.Inamura, H.Hosoda 105. Mechanical biocompatibility of rare earth dispersion strengthened β-titanium alloy for biomedical applications S.Nagai, M.Niinomi, M.Nakai, S.Yonezawa, Xiu Song 106. Process Designing for optimization of electrochemical properties T.Hanawa, K.Kuroda, Y.Tsutsumi 107. Effect of surface roughness on fabrication of hydroxyapatite film on surface of Ti-29Nb-13Ta-4.6Zr using a MOCVD process T.Gozawa, K.Saitou, M.Niinomi, M.Nakai, T.Gotou, Tu Rong 108. Effect of grain size on mechanical properties of a biocompatible beta-type titanium alloy R.Kanekiyo, K.Narita, M.Niinomi, M.Nakai 109. Development of Young's modulus changeable titanium alloys for spinal fixation M.Nakai, M.Niinomi 110. Effects of chemical composition and aging on mechanical properties of Ti-Mo-Al biomedical shape memory alloys H.Hosoda, T.Iamura, M.Taniguchi, H.Y.Kim, S.Miyazaki 111. Effect of purity level on the grain size in SPD-processed pure aluminums
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion S.Kamado, S.W. Xu, K.Oh-ishi, T.Homma, K.Hono 102. Microtexture evolution during superplastic deformation in AM60 magnesium alloy K.Kurimoto, H.Watanabe, T.Uesugi, Y.Takigawa, K.Higashi 103. Mechanical properties and microstructure of laser-welded α+β-type titanium alloys for next-generation air crafts Y.Nagasawa, M.Niinomi, M.nakai, K.Hayashi, Y.Itsumi, S.Murakami, H.Oyama, W.Abe 104. Three competing strain-free conditions in martensitic transformation of titanium-base shape memory alloy T.Inamura, H.Hosoda 105. Mechanical biocompatibility of rare earth dispersion strengthened β-titanium alloy for biomedical applications S.Nagai, M.Niinomi, M.Nakai, S.Yonezawa, Xiu Song 106. Process Designing for optimization of electrochemical properties T.Hanawa, K.Kuroda, Y.Tsutsumi 107. Effect of surface roughness on fabrication of hydroxyapatite film on surface of Ti-29Nb-13Ta-4.6Zr using a MOCVD process T.Gozawa, K.Saitou, M.Niinomi, M.Nakai, T.Gotou, Tu Rong 108. Effect of grain size on mechanical properties of a biocompatible beta-type titanium alloy M.Nakai, M.Niinomi, M.Nakai 109. Development of Young's modulus changeable titanium alloys for spinal fixation M.Nakai, M.Niinomi 110. Effects of chemical composition and aging on mechanical properties of Ti-Mo-Al biomedical shape memory alloys T.Hirata, T.Morishige, M.Tsujikawa, T.Uesugi, Y.Takigawa, K.Higashi 112. Effect of Mg solubility on the minimum grain size in SPD-processed Al-Mg alloys
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion
 101. Extraordinary strengthening of Mg-Al-Ca-Mn alloy containing only common metals by utilization of dynamic structural changes during hot extrusion

115. Fabrication of composite material using alminum alloy powder and coal ash by spark plasma sintering
M.Yamazato, I.Fukumoto, Y.Kanda
116. Consolidation of Al-Al ₂ O ₃ composite powders by high-pressure torsion M.Ashida , Z.Horita , T.Kita , A.Kato
117. Reevaluation of strain rate of Al-Mg solid solutions by strain acceleration parameter H.Sato, H.Ota
118 The effect of grain boundary on formation of deformation bands in an aluminum bicrystal
K.Kashihara , H.Konishi , T.Shibayanagi
119. Influence of sheet thickness and clearance at sheet metal by L bending
120. Influence of die open width and punch radius on springback at V bending process of plate N.Khamt, M.Murata, T.Kuboki, Y.Jin, T.Shibata
121. Analytical and experimental studies of deformation behavior in new shearing method
D.Lu, M.Murata, T.Kuboki, Y.Jin
122. Effect of rolling condition on wear particles in cold rolling of 1050 aluminum Y.Totani , K.Ueda , M. Yonemitsu , Y.Hosomi
123. Study of condition for determination of trace element with ICP-OES S.Mae , M.Yonemitsu
124. Determination of aluminum oxide film thickness by surface analysis
125. Invasion of hydrogen in a 7075 aluminum alloy affected by constituent particles
G.Itoh, H.Hayase, M.Watanabe
126. Problem in the behavior analysis of hydrogen in aluminum by means of hydrogen microprint technique
K.Saitoh , H.Iwahashi , T.Tsutsumi , G.Itoh , T.Shikagawa
127. Introduction to refractories for Aluminum melting-holding furnace H.Anada, E.Motoki
128 Review of wettability between molten Aluminum and refractory materials
H.Anada , S.Tani
129. A testing method for evaluation of wettability between molten Aluminum and refractory materials H.Anada, M.Morishita
130. Considerations of the experimental conditions from the shape of molten Aluminum for evaluation of wettability
H.Anada , M.Ishiduka
131. Effect of Barium Sulfate on the contact angle between molten Aluminum and refractory materials H.Anada, K.Noda
132. Direct reduction of oxides without intermediated compounds R.O.Suzuki, T.Kikuchi
133. Effect of alminium content on phase constitution and heat treatment behavior of Ti-8.5Mn-1Fe-Al alloys
M.Ikeda, T.Kinoshita, A.Tomita, S.Toda, M.Ueda
134. Effect of coherent precipitates on the mechanical properties of the titaium alloy single crystals
135. Effect of additive elements on α ω phase transformation by HPT-straining and heat-treatment
Y.Todaka, M.Iketani, K.Irie, H.Azuma, M.Umemoto
136. Effect of potential on hydrogen absorption to Ti containing Fe or Ni
137. Microstructure and heat treatment behavior of HPT- processed Ti-13Cr-1Fe-3Al alloy
H.Matsuhira, Y.Takasaki, M.Ikeda, M.Ueda, Y.Todaka
138. In-situ measurement of dislocation density during tensile deformation in bulk nanostructured aluminum H.Adachi , T.Takagi , Y.Miyajima , N.Tsuji
139. The effects of transition elements on the control of surface recrystallization in Al-Zn-Mg aluminum alloy extrusion.
······································
140. Microstructural control of an Al-Zn eutectoid alloy by rolling process Nguyen Loc The, G.Itoh, Y.Motohashi, T.Sakuma, Y.Yi
141. Effects of Mg and Si on the recrystallization behavior during hot rolling of Al-Mn alloys
Y.Inoue, Y.Aruga, K.Matsumoto, K.Tsuruda, K.Masada
142. Mechanical Property Resulting from Aging treatment of Ultrafine Grained Al-0.5%Si-0.5%Ge Alloy by ARB
R.Hamano, K.Nonaka, Y.Takayama, H.Watanabe

144 And the fifther and the first ALM all all DCC
144. Analysis of the occurrence of serrations in Al-Mg alloys by DSC H.Tsuneishi, Y.Aruga, K.Matsumoto
145. Development of Bulk Texture Measurement Technique Based on Neutron Diffraction
146. Various Applications of Bulk Texture Measurement Technique Based on Neutron Diffraction P.G.Xu, T.Suzuki, S.Morooka, E.Yukutake
147. Microstructure refinement and mechanical property of Al-Fe alloy by compressive torsion processing
148. Texture formation process during high temperature plane strain compression in Al-Mg alloys
149. High temperature deformation behavior of a 6N01 aluminum alloy extrusion containing a weld part S.Yasuda, K.Atsuta, S.Wakaguri, K.Ichitani, A.Hibino
150. Use of Fe for Strengthening of Al through Application of High-Pressure Torsion J.Cubero, Z.Horita
151. Effects of cold rolling reduction after solution heat treatment on aging hardening of Al-Mg-Si alloy sheet Y.Yamamoto, Y.Ozeki, M.Asano
152. Stability of nanoclusters and two-step aging behavior of Al-Mg-Si(-Cu) alloys JaeHwang Kim, E.Kobayashi, T.Sato
153. Effect of HPT or rolling on aging behavior in Al-Mg-Si alloys
T.Nagai, K.Matsuda, J.Nakamura, T.Kawabata, S.Ikeno, D.Akama, Z.Horita, S.Hirosawa 154. Precipitation structure in Cu and Ag added Al-Mg-Si alloys aged at 523K
M.Tokuda, K.Matsuda, T.Nagai, J.Nakamura, T.Kawabata, S.Ikeno 155. Effect of Mn or Fe addition on the age-hardening and precipitation in Al-Mg-Si alloys
S.Chen, S.Wang, K.Matsuda, T.Kawabata, S.Ikeno, T.Takai, Y.Yamasita 156. Effect of additional elements on material properties in Al-Zn-Mg series extrusion materials
157. Effect of additional elements on the age-hardening property of 7000 series Al alloys
 157. Effect of additional clements on the age-nardening property of 7000 series Af anoys
M.Takahashi , Y.Takayama , H.Watanabe
159. Relationship between β'-phase and its precursor phase in silver added Al-Mg-Si alloy J.Nakamura , K.Matsuda , T.Sato , C.D.Marioara , S.J.Andersen , R. Holmestad
160. Microstructure and mechanical properties change with isochronal aging in Al-Ni-Gd metallic glasses H.Kato, S.Hirosawa, K.Matsuda, G.J.Shiflet
161. Effect of different Mg ₂ Ge contents on the age-hardening behavior of Al-Mg-Ge alloys T.Murakami, K.Matsuda, T.Nagai, J.Nakamura, T.Kawabata, S.Ikeno
162. TEM observation on early stage of age-precipitation in Mg-Gd-Y alloy
163. TEM observation of microstructure in Mg-Gd-6.4%Sc alloy
164. Crystallographic orientation relationship between discontinuous precipitation and the matrix in AM-system magnesium alloys
K.Watanabe, K.Matsuda, T.Kawabata, K.Sakakibara, K.Sasaki, S.Saikawa, S.Ikeno 165. Effect of Mn contents on age-hardening in AM60 magnesium alloys.
166. Effect of Zn content on aging precipitate of Mg-Zn alloys
167. HRTEM observation of the precipitates in Mg-Y(-Zr) alloy at early stage of aging.
T.Kawabata , K.Matsuda , S.Ikeno
168. Biomimetic color-tuned superhydrophobic surface on magnesium alloy T.Ishizaki, N.Saito
169. Improvement of corrosion resistance of Mg-9%Al alloys containing copper by zinc addition H.Kawabata, N.Nishino, Y.Genma, T.Seguchi
170. Susceptibility to environment-assisted cracking of Mg alloy in aqueous solutions of variuos pHs and chloride concentrations T.Haruna, R.Kishimoto
171. Effect of laser cleaning on recycling of magnesium scrap
172. Microstructure and mechanical properties of Mg-Zn-Y-RE alloys with LPSO phase Jonghyun Kim, Y.Kawamura
Jonghyun Kim , Y.Kawamura

173. Fatigue behavior of Mg-Zn-Gd alloy with LPSO phase
S.Ando, H.Kitahara, T. Yanagihara, T.Yamashita 174. Mechanical properties and microstructure of extruded Mg alloys with long period stacking order phase M.Noda, Y.Kawamura
175. Effects of Mn or Zr addition on mechanical properties of extruded Mg-Gd-Y-Zn alloy bars Y.Hiramitsu , S.Kamado , T.Honma , T.Koike , M.Katsui
176. Indentation creep of Mg-based extruded alloy containing LPSO Phase
177. Grain size dependence of microstructure and age hardening property in AM-type magnesium
H.Takano, M.Furui, S.Ikeno, T.Yamaguchi, S.Saikawa 178. Hardness and microstructure evolutions during aging treatment in AZ system magnesium alloys cast into permanent mold K.Minami, M.Furui, S.Ikeno, S.Saikawa
179. Age-hardening behavior of 6mass% aluminum content magnesium alloys cast into sand mold
180. Effect of rolling on age-precipitation in AM60 magnesium alloy with pre-precipitation area
181. Strength and ductility of torsion-extruded magnesium alloy AZ31
182. Multi-directional forging under decreasing temperature conditions and at room temperature of coarse grained AZ61Mg alloy H.Miura, T.Maruoka, M.Ito
183. Texture formation process durning high temperature plane strain compression deformation of AZ80 magnesium alloy J.Kim, K.Okayasu, H.Fukutomi
184. Effect of Ca addition on microstructures and mechanical properties of hot-compressed AZ91 magnesium alloys R.Yoshimasu , S.W.Xu , T.Homma , S.Kamado
185. Grain refinement and forgeability of magnesium alloy by tosion extrusion with rapid rotation
186. Improvement of hydrogen storage capacity and mechanical properties in pure magnesium by high-pressure torsion K.Edalati , A.Yamamoto , Z.Horita , T.Ishihara
187. Orientation randomization and cold formability of AM60 magnesium alloy sheet T.Yamakawa , M.Kohzu , K.Sugimoto , H.Numakura , Y.Nakaura , A.Watanabe
188. Fabrication and characterization of titanium-clad AZ80 magnesium alloy sheets H.Inoue, S.Isono
189. Influence that difference of bonding method of Mg/Al clad sheets exerts on interface
190. Influence of texture on fatigue crack propagation in rolled AZ31B magnesium alloy S.Morita, S.Morita, F.Tamai, Y.Kawakami
191. Damping characteristics of AZ31 magnesium alloy by inverted torsion pendulum method
T.Toguri, T.Shioya, T.Asahina 192. Effect of strain rate on indentation load in pure aluminum H.Yamada, N.Ogasawara, K.Horikawa, M.Mutsuo, K.Watanabe, H.Kobayashi
193. Effect of hydrogen on ductile fracture in ultrahigh purity aluminum
194. Effect of shot peening on fatigue characteristic of AZ31 magensium alloy K.Hohkawa , N.Mihula , H.Kobayasin K.Funami , M.Noda , Y.Ichihara
195. Fatigue characteristic of scored thin sheet of aluminum alloy
196. Local heating of aluminum alloy by induction heating apparatus
197. Effect of texture on the hydraulic bulging deformation of 6000-series aluminum alloy sheet: finite element analysis and experimental valida D.Yanaga, T.Kuwabara, N.Uema, M.Asano
P01. Visualization of hydrogen accumulation to grain boundaries or inclusions in tensile-deformed Al-Zn-Mg-Cu alloy
P02. Inline rolling of strip cast by a vertical high speed twin-roll caster Y.Yamasaki, T.Haga
P03. Investigation of the influence of the roll surface on the strip at the casting using a Vertical type high speed twin roll caster T.Yamashiki, T.Haga
P04. Casting of Aluminum Alloy Strip by an Improved Single-Roll Custer K.Kamakura, K.Akitsu, H.Haga

P05. Casting of aluminum alloy clad strip by a twin roll tandem caster with scrapers
P06. Behavior of environmental hydrogen in electrolytically charged aluminum alloys
P07. Visualization of Al-Si melt duing cast by centrifugal mixed-powder method
K. Oguri , H.Sato , E. Miura-Fujiwara , Y.Watanabe P08. Estimation of the cooling rate distribution by means of lamellar spacing of Al-Al ₂ Cu eutectic structure during centrifugal casting method Y.Hattori , H.Sato , E. Miura-Fujiwara , Y.Watanabe
P09. Fatigue characterstics of a cast aluminum alloy solution heat-treated at a high temperature T.Inamori, H.Toda, M.Kobayashi
P10. Three-dimensional image base analysis of fatigue crack closure behaviors
P11. Surface corrosion behavior of electron-excited pure Mg K.Funatsu, R.Takei, J.Umeda, K.Kondoh
P12. Mechanical property of titanium matrix composites reinforced with carbon black particles of wasted black ink T.Mimoto, N.Nakanishi, T.Yoshimura, T.Threrujirapapong, J.Umeda, K.Kondoh
P13. Pyrolysis behavior of titanium dioxide particles dispersed in pure titanium powder consolidated material
 P14. Fabrication of α-alumina membrane with controlled pore interval by anodization T.Masuda , H.Asoh , S.Haraguchi , T.Shindou , S.Kuboya , S.Ono P15. Pulsed YAG laser weldability of pure Ti and A5052 Aluminum alloy / pure Cu sheet
K.Tomura , T.Asahina
P16. Temperature measurement during friction stir welding of 1050Al/ 5052Al alloy. K.Kumai, Y.Akutsu, Y.Takayama, H.Watanabe
P17. Effect of tilt angle of tool on friction stir welding of 5052 aluminum alloy foil K.Aramomi, Y.Takayama, H.Watanabe
P18. Titania coating on beta-type titanium alloy by anodizing in surfuric aqueous X.J.Lu, D.Yamamoto, K.Kuroda, M.Okido, R.Ichino, T.Akahori, M.Niinomi, M.Ueda, M. Ikeda, Y. Koyanagi
P19. In vivo Evaluation of Anodized Titania Coating on Titanium Substratein Various Aqueous Solutions K.Arii, K.Kuroda, R.Ichino, M.Okido
P20. Friction stir lap welding of 5454-O aluminum alloy with dissimilar thicknesses Y.J.Kwon, C.Y.Lim
P21. Hot compression property of AZ80 continuous casting material and AZ80 Extruded material A.Watazu , N.Saito , H.Iwasaki , I.Shigematsu , M.Sakamoto
P22. Forging properties of AZ91 continuous casting bar and AZ80 Extruded bar
A.Watazu , N.Saito , H.Iwasaki , I.Shigematsu , M.Sakamoto P23. Effect of room temperature multi directional forging on microstructure and mechanical property of AZ61 magnesium alloy
P24. Effect of strain rate on microstructural change during multi directional forging of AZ80 magnesium alloy R.Watanabe, H.Miura
P25. Synthesis of Sodium Titanate / TiO ₂ Composite film on Ti Using Molten Salt Treatment
P26. Effect of Zn contents on age-hardening in AZ-series magnesium alloys Y.Tajima , K.Kuroda , R.Ichino , M.Okido Y.Narukawa , K.Watanabe , K.Matsuda , T.Kawabata , K.Sakakibara , S.Saikawa , S.Ikeno
P27. Recrystallization mechanism of Mg-5.99Zn-1.76Ca-0.35Mn (mass%) alloy during hot extrusion S.W.Xu , S.Kamado , T.Homma
P28. Microstructural changes in Mg-Al-Ca-Mn alloys with hot rolling and mechanical properties of the rolled sheets K.Ueno, S.W.Xu, T.Homma, S.Kamado
P29. Microstructures and creep properties of Mg-Al-Ca-Mn alloy based composites reinforced with Si-coated CNF
P30. Behavior of hydrogen in the vicinity of crack tip in 7075 and 6061 aluminum alloys

G.Itoh, H.Iwahashi, T.Watakabe, R.Kurumada, Y.Hatano